StringTemplate : StringTemplate 3.0 Printable Documentation

This page last changed on Oct 23, 2006 by kunle_odutola@hotmail.com.

Terence Parr

University of San Francisco

parrt AT cs.usfca.edu

Copyright 2003-2005
http://www.stringtemplate.org (BSD license)

C# version created by Kunle Odutola

kunl e UNDERSCORE odutola AT hotmail.com
Copyright 2005-2006

(ST# - C# StringTemplate released under BSD License)

Python version created by Marq Kole
mar g DOT kol e AT xsdall DOT nl
Copyright 2003-2006

Contents

e StringTemplate 3.0 Release Notes
° Enhancements
° Backward incompatibilities
° Bug Fixes
o Introduction
° Motivation And Philosophy
° StringTemplate language flavor
e Defining Templates
° Creating Templates With Code
° Loading Templates From Files
° lLoading Templates relative to an implementation specific location
° Caching
e Group Files
° Supergroups and interfaces
° Maps
° Group file format
° Group loaders

° Formal argument default values
° Formal argument error handling

° Newline handling
e Group interfaces
e Expressions
° Attribute References
° Template References
° Attribute operators
° Template Application
° Conditionally Included Subtemplates \(IF statements
¢ Functionality Summary
e Object Rendering
e Template And Attribute Lookup Rules

Document generated by Confluence on Oct 23, 2006 11:47 Page 1

http://www.antlr.org/wiki/display/~admin
http://www.stringtemplate.org
http://www.antlr.org/wiki/display/~kunle_odutola%40hotmail.com

° Template lookup

° Attribute scoping rules
e Setting the Expression Delimiters
e Template inheritance
e Template regions
e Auto\-indentation
e Automatic line wrapping
e Output Filters
e StringTemplate Grammars
e Debugging
o Acknowledgements

Related material

e DRAFT A Functional Language For Generating Structured Text

¢ Internationalization and Localization of Web Applications In Action
e lLanguage Translation Using ANTLR and StringTemplate

o Intelligent Web Site Page Generation

e The Role of Template Engines in Code Generation

It is highly recommended that you read the (academically-oriented) paper, Enforcing Model-View
Separation in Template Engines.

The StringTenpl at es distribution includes many unit tests that also represent a useful set of examples.

The tests are defined in:

Java Test StringTenpl ate. j ava
C# Test StringTenpl ate. cs
Python Test Stri ngTenpl at e. py

Please see the StringTemplate 3.0 Release Notes and changes and bugs page. That page generally
discusses the Java version of StringTemplate but, some of the information it contains might apply to
other implementations.

StringTemplate 3.0 Release Notes

Brought to you by that maniac that brings you the ANTLR parser generator!

Terence Parr

University of San Francisco

parrt at cs dot usfca dot edu

Copyright 2003-2006

http://www.stringtemplate.org (StringTemplate released under BSD License)

Version 3.0, September 6, 2006

3.0 fixes lots of bugs and adds some great new features including:

Document generated by Confluence on Oct 23, 2006 11:47

Page 2

http://www.codegeneration.net/tiki-read_article.php?articleId=77
http://www.cs.usfca.edu/~parrt/course/601/lectures/page.generation.html
http://www.researchchannel.org/prog/displayevent.asp?rid=3286
http://www.antlr.org/wiki/display/ST/StringTemplate+3.0+Release+Notes
http://www.stringtemplate.org/bugs.tml
http://www.antlr.org
http://www.stringtemplate.org

e Group interfaces

e Template regions

e Automatic line wrapping
e Group loaders

e length(), strip() operators
e Map predefined operators keys and values for iterating maps.

The features were added in response to my needs building ANTLR v3's code generator and from feedback
by StringTemplate users.

3.0 should be a drop-in replacement for those using ST for websites and code generation with a few
minor potential incompatibilities as noted below. Also see the change list. The biggest issue is that now
angle brackets are the default delimiter for StringTemplate groups.

Enhancements

e Added interfaces. See unit tests and http://www.cs.usfca.edu/~parrt/papers/ST.pdf.

group Java i npl ements ANTLRCor eTar get ;
rule(...) ::=" "

You can say "optional template(args);" also. Uses group loader to find interfaces.

e Added CommonGrouplLoader so you can reference groups/interfaces now in group files etc...

StringTenpl at eG oup. r egi st er G oupLoader (new CommonG oupLoader (dir, errorListener));

The dir is a string that can be "dirl:dir2:dir3" etc... These are interpreted as relative paths to be
used with CLASSPATH to locate groups. E.g., If you pass in "org/antlr/codegen/templates” and ask
to load group "foo" it will try to load via classpath as "org/antlr/codegen/templates/foo". Another,
PathGroupLoader, is a brain dead loader that looks only in the directory(ies) you specify in the ctor.

e Added group inheritance notation:

group subG : superG

Method setSuperGroup(name) now does something useful it invokes the loadGroup() method of the
group loader.

¢ Added template regions that either marks a section of a template or leaves a "hole" that subgroups
may alter. See http://www.cs.usfca.edu/~parrt/papers/ST.pdf

¢ added amazing line wrap facility.* Updated StringTemplateWriter to support line wrapping:

e map still iterates over values if you say <aMap> but it is now shorthand for <aMap.values>.
Similarly <aMap.keys> walks over the keys. You can do stuff like: <aMap.keys:{k| <k> maps to
<aMap.(k)>3}>.

Document generated by Confluence on Oct 23, 2006 11:47 Page 3

http://www.antlr.orgnull/display/ST/Group+interfaces
http://www.antlr.orgnull/display/ST/Template+regions
http://www.antlr.orgnull/display/ST/Automatic+line+wrapping
http://www.stringtemplate.org/bugs.tml

added length(attribute) thanks to Kay Roepke. For now it does not work on strings; it works on
attributes so length("foo") is 1 meaning 1 attribute. Nulls are counted in lists so a list of 300 nulls is
length 300. If you don't want to count nulls, use

length(strip(list)).

e added strip(attribute) that returns an iterator that skips any null values.
strip(x)=x when x is a single-valued attribute. Added StripIterator to handle this.

e added ability to show start/stop of template with <name>...</name>.
emitTemplateStartDebugString/emitTemplateStopDebugString and
doNotEmitDebugStringsForTemplate(tempaltename)

Added null=expr option on expressions. For null values in iterated attributes and single attributes
that are null, use this value instead of skipping. For single valued attributes like <name;
null="n/a">. It's a shorthand for

<i f (nane) ><nane><el se>n/ a<endi f >

For iterated values

<val ues; null="0", separator=",6">

you get O for null list values. Works for template application
like this also:

<val ues: {v| <v>}; null="0">

This does not replace empty strings like "" as they are not null.

e added build.xml ANT file (ick)

e {} and "" work as arguments now to templates

¢ note in doc that map strings are now templates and that <<...>> works too. default or others can
have empty values (implying no value) or use "key" but not in template; it's a keyword. Also,
default must be at end now (and only 1). Default value is empty as before. To return null, use
"default :" at end. Can use empty values too:
{"float":}, {"int":"0"}, ...

e added i0 which is like i except indexed from 0 not 1.

¢ Added StringTemplate.getDependencyGraph() to get a list of n->m edges where template n
contains template m. Also made convenient getDOTForDependencyGraph(). You get a template
back that lets you reset node shape, fontsize, width, height attributes. Use removeAttribute before
setting so you are sure you only get one value.

e Added StringTemplate.toStructureString() to help discover nested structure.

Document generated by Confluence on Oct 23, 2006 11:47 Page 4

added toString to Aggregate so that referencing foo in isolation prints something useful when you
have the following code: setAttribute("foo.{x,y}", ...).

Added default lexer mechanism for groups so you can set once:
public static void registerDefaultLexer(Class lexerClass)

Improved error when property ref causes the error internally. Now shows that exception rather than
invocation target exception.

Added STG.getlnstanceOf(name,attributes)

Backward incompatibilities

The following changes were worth making despite causing some backward compatibilities for some users.

This
new

<...> is now default expression delimiter for group files.

I had to make a more clear distinction between empty and null. Null means there is nothing there
whereas empty means the value is there but renders to an empty string. IF conditionals now
evaluate to empty if condition is false.

Changed how separators are generated. Now I generate a separator for any non-null value in the
list even if that value is a conditional that evaluates to false. Iterated empty values always get a
separator. Note that empty is not the same thing as missing. "" is not missing and hence will get a
separator.

made the ASTExpr.write separator computation much simpler and allowed me to properly handle the
"null" option.

Bug Fixes

allow different source of classloader:

InputStreamis = cl.get ResourceAsStrean(fil eNane);
if (is==null) \{

cl = ErrorManager. cl ass. get O assLoader () ;
is = cl.getResourceAsStrean(fil eNane);

fixed bug where separator did not appear in lists of stuff with lots of null entries.

made static maps in STG synchronized, also synchronized the look up/def methods for templates in
STG.

removed reflection property lookup; too complex for value. profiling indicates it's a small cost. No
thread synch issues either now.

template evaluation for anonymous templates did not properly look up overridden templates. The

Document generated by Confluence on Oct 23, 2006 11:47 Page 5

group for anonymous templates was not reset to be the current enclosing template's group
(remember we can dynamically set the superGroup).

e Signhature changed to use AttributeRenderer:

dublic void registerRenderer(Cl ass attributeC assType,
Attri but eRenderer renderer)

o If exprin <(expr):template()> evaluated to nothing, the template was still invoked.

e Couldn't handle List<int[]>. Nested int[] was not iteratable.

e Couldn't gen \ in a template. \<value> in a template escaped the <.
<value> printed both slashes. Fixed.

e Couldn't use
\{
inside of a {...} anonymous template.
e Fixed: you could not have template expressions, just simple expressions in indirect template

expressions like

$data: ("foo":a())()$}}

. I decided not to allow IF expressions inside.

e now throws exception when dots are in template names or attribute names

e don't set "it" nor "attr" default attributes if there is a parameter to an anonymous block like
<names:{n | ...}>

e Bug fix. If you passed in a list and then another element, it added it to the list you passed in! Now, I
make a (shallow) copy of the list.

e Bug fix. If you passed an element then a list to an attr and I think it didn't flatten out properly!

e Couldn't escape in template group. \<< failed as did ...} for anonymous templates.

e When creating an aggregate list, couldn't have spaces in {...} such as "folders.{a, b}".

e Embedded templates such as {...} anonymous templates couldn't see the renderers for enclosing
templates. Easy to set one renderer in root template for, say, Date and forget about it. If none
found for that class in containment hierarchy, then group hierarchy is checked.

e using nativegroup to create instances now in ST.getInstanceOf. Needed so that super.foo works
properly. THe new instance's group will point at creating group so polymorphism works properly.

e auto defined attribute i was not defined for <a,b: {...}> case. ooops.

Document generated by Confluence on Oct 23, 2006 11:47 Page 6

¢ You couldn't have '="in a string if preceded by '+' like foo+"ick=".

¢ Fixed bug where an expr on the first line that yields no output left a blank line.

e There was a bug in StringTemplateGroup.isDefined that it always returned true.

e If you iterated multiple empty attributes, it iterated once with null values. Bizarre. Fixed.

e Bug in polymorphism when an overridden template called its super which called another template
which was also overridden; didn't call the overridden method. Fixed getInstanceOf() so that it
always sets the proper group so polymorphic template lookup also starts at the right group.

e Test testLazyEvalOfSuperInApplySuperTemplateRef was wrong...The "super." prefix is (like in Java,
...) a scope override and is always evaluated relative to the template in which it was defined not the
template in which it is evaluate!

e Improving error messages to be more specific when you get a parser error. I'm including more
context info and hopefully the file within a group file the error occurs.

e The defaultGroup is now public so you can know StringTemplate's default group when you see it:

public static StringTenpl ateG oup default G oup =
new StringTenpl at eG oup("defaul t Goup", ".");

e Template polymorphism bug: wouldn't work for references in IF clauses!
e Any Map instance is now allowed as a "map" attribute not just Hashtable, HashMap.
* NullPtrExc if you registered a renderer and sent an object as an attribute of another type!

e The tree viewer didn't work; class cast problem with Hashtable vs HashMap.

Introduction

Most programs that emit source code or other text output are unstructured blobs of generation logic
interspersed with print statements. The primary reason is the lack of suitable tools and formalisms. The
proper formalism is that of an output grammar because you are not generating random characters--you
are generating sentences in an output language. This is analogous to using a grammar to describe the
structure of input sentences. Rather than building a parser by hand, most programmers will use a parser
generator. Similarly, we need some form of unparser generator to generate text. The most convenient
manifestation of the output grammar is a template engine such as Stri ngTenpl at e.

A template engine is a simply a code generator that emits text using templates, which are really just
"documents with holes" in them where you can stick values. Stri ngTenpl at e breaks up your template
into chunks of text and attribute expressions, which are by default enclosed in dollar signs
$attribute-expression$ (to make them easy to see in HTML files). Stri ngTenpl at e ignores everything
outside of attribute expressions, treating it as just text to spit out when you call:

Document generated by Confluence on Oct 23, 2006 11:47 Page 7

Java StringTenpl ate.toString()
C# StringTenpl ate. ToString()

Python StringTenpl ate. _str_()

For example, the following template has two chunks, a literal and a reference to attribute nane:

Hel 1 o, $nane$

Using templates in code is very easy. Here is the requisite example that prints "Hel | o, Worl d":

Java
import org.antlr.stringtenplate.*;
StringTenpl ate hell o = new
StringTenpl ate("Hell o, $name$");
hel | 0. Set Attri bute("nanme", "Wrld");
Systemout.println(hello.toString());
C#
using Antlr. StringTenpl ate;
StringTenpl ate hell o = new
StringTenpl ate("Hell o, $name$");
hel | 0. Set Attri bute("nane", "World");
Consol e. Qut. Wi teLine(hello. ToString());
Python
i nport stringtenplate
hello =
stringtenpl ate. StringTenpl at e(" Hel | o,
$nanes$")
hel | o["name"] = "Worl d"
print str(hello)

StringTenpl at e is not a "system" or "engine" or "server"; it is a library with two primary classes of
interest: StringTenpl at e and Stri ngTenpl at eG oup. You can directly create a Stri ngTenpl at e in code,
you can load a template from a file, and you can load a single file with many templates (a template group
file).

Motivation And Philosophy

StringTenpl at e was born and evolved during the development of http://www.jGuru.com. The need for
such dynamically-generated web pages has led to the development of humerous other template engines
in an attempt to make web application development easier, improve flexibility, reduce maintenance costs,
and allow parallel code and HTML development. These enticing benefits, which have driven the
proliferation of template engines, derive entirely from a single principle: separating the specification
of a page's business logic and data computations from the specification of how a page displays such
information.

These template engines are in a sense are a reaction to the completely entangled specifications
encouraged by JSP (Java Server Pages), ASP (Active Server Pages) and, even ASP.NET. With separate

Document generated by Confluence on Oct 23, 2006 11:47 Page 8

http://www.jGuru.com

encapsulated specifications, template engines promote component reuse, pluggable site "looks",
single-points-of-change for common components, and high overall system clarity. In the code generation
realm, model-view separation guarantees retargetability.

The normal imperative programming language features like setting variables, loops, arithmetic
expressions, arbitrary method calls into the model, etc... are not only unnecessary, but they are very
specifically what is wrong with ASP/JSP. Recall that ASP/JSP (and ASP.NET) allow arbitrary code
expressions and statements, allowing programmers to incorporate computations and logic in their
templates. A quick scan of template engines reveals an unfortunate truth--all but a few are
Turing-complete languages just like ASP/JSP/ASP.NET. One can argue that they are worse than
ASP/JSP/ASP.NET because they use languages peculiar to that template engine. Many tool builders have
clearly lost sight of the original problem we were all trying to solve. We programmers often get caught up
in cool implementations, but we should focus on what should be built not what can be built.

The fact that StringTemplate does not allow such things as assignments (no side-effects) should make
you suspicious of engines that do allow it. The templates in ANTLR v3's code generator are vastly more
complicated than the sort of templates typically used in web pages creation with other template engines
yet, there hasn't been a situation where assignments were needed. If your template looks like a program,
it probably is--you have totally entangled your model and view.

After examining hundreds of template files that I created over years of jGuru.com (and now in ANTLR v3)
development, I found that I needed only the following four basic canonical operations (with some
variations):

e attribute reference; e.g., $phoneNunber $

¢ template reference (like #include or macro expansion); e.g., $sear chbox() $

¢ conditional include of subtemplate (an IF statement); e.g.,
Sif(title)$<title>$titleS</title>$endif$

e template application to list of attributes; e.g., $names: bol d() $

where template references can be recursive.

Language theory supports my premise that even a minimal StringTemplate engine with only these
features is very powerful--such an engine can generate the context-free languages (see Enforcing Strict
Model-View Separation in Template Engines); e.g., most programming languages are context-free as are
any XML pages whose form can be expressed with a DTD.

While providing all sorts of dangerous features like assignment that promote the use of computations and
logic in templates, many engines miss the key elements. Certain language semantics are absolutely
required for generative programming and language translation. One is recursion. A template engine
without recursion seems unlikely to be capable of generating recursive output structures such as nested
tables or nested code blocks.

Another distinctive Stri ngTenpl at e language feature lacking in other engines is lazy-evaluation.

Stri ngTenpl at e's attributes are lazily evaluated in the sense that referencing attribute "a" does not
actually invoke the data lookup mechanism until the template is asked to render itself to text. Lazy
evaluation is surprising useful in both the web and code generation worlds because such order decoupling
allows code to set attributes when it is convenient or efficient not necessarily before a template that
references those attributes is created. For example, a complicated web page may consist of many nested
templates many of which reference $user Nane$, but the value of user Nane does not need to be set by
the model until right before the entire page is rendered to text via ToStri ng() . You can build up the

Document generated by Confluence on Oct 23, 2006 11:47 Page 9

complicated page, setting attribute values in any convenient order.

StringTenpl at e implements a "poor man's" form of lazy evaluation by simply requiring that all attributes
be computed a priori. That is, all attributes must be computed and pushed into a template before it is
written to text; this is the so-called "push method" whereas most template engines use the "pull
method". The pull method appears more conventional because programmers mistakenly regard templates
as programs, but pulling attributes introduces order-of-computation dependencies. Imagine a simple web
page that displays a list of names (using some mythical Java-based template engine notation):

<htm >

<body>

$f oreach n in nanes$
n</1i >

end

</ ol >

There are $nunber Nanes$ nanes.

</ body>

</htm >

Using the pull method, the reference to nanes invokes nodel . get Nanes(), which presumably loads a list
of names from the database. The reference to nunber Narmes invokes nodel . get Nunber Nanes() which
necessarily uses the internal data structure computed by get Nanes() to compute nanes. si ze() or
whatever. Now, suppose a designer moves the nunber Nanes reference to the <ti tl e> tag, which is
before the reference to nanes in the f or each statement. The names will not yet have been loaded,
yielding a null pointer exception at worst or a blank title at best. You have to anticipate these
dependencies and have get Nunber Nanes() invoke get Nanes() because of a change in the template.

I'm stunned that other template engine authors with whom I've spoken think this is ok. Any time I can
get the computer to do something automatically for me that removes an entire class of programming
errors, I'll take it!. Automatic garbage collection is the obvious analogy here.

The pull method requires that programmers do a topological sort in their minds anticipating any order
that a programmer or designer could induce. To ensure attribute computation safety (i.e., avoid hidden
dependency landmines), I have shown trivially in my academic paper that pull reduces to push in the
worst case. With a complicated mesh of templates, you will miss a dependency, thus, creating a really
nasty, difficult-to-find bug.

StringTemplate mission

When developing StringTemplate, I recalled Frederick Brook's book, "Mythical Man Month", where he
identified conceptual integrity as a crucial product ingredient. For example, in UNIX everything is a
stream. My concept, if you will, is strict model-view separation. My mission statement is therefore:

"StringTemplate shall be as simple, consistent, and powerful as possible without sacrificing strict
model-view separation."

I ruthlessly evaluate all potential features and functionality against this standard. Over the years,
however, I have made certain concessions to practicality that one could consider as infringing
ever-so-slightly into potential model-view entanglement. That said, StringTemplate still seems to enforce
separation while providing excellent functionality.

Document generated by Confluence on Oct 23, 2006 11:47 Page 10

I let my needs dictate the language and tool feature set. The tool evolved as my needs evolved. I have
done almost no feature "backtracking". Further, I have worked really hard to make this little language
self-consistent and consistent with existing syntax/metaphors from other languages. There are very few
special cases and attribute/template scoping rules make a lot of sense even if they are unfamiliar or
strange at first glance. Everything in the language exists to solve a very real need.

StringTemplate language flavor

Just so you know, I've never been a big fan of functional languages and I laughed really hard when I
realized (while writing the academic paper) that I had implemented a functional language. The nature of
the problem simply dictated a particular solution. We are generating sentences in an output language so
we should use something akin to a grammar. Output grammars are inconvenient so tool builders created
template engines. Restricted template engines that enforce the universally-agreed-upon goal of strict
model-view separation also look remarkably like output grammars as I have shown. So, the very nature
of the language generation problem dictates the solution: a template engine that is restricted to support
a mutually-recursive set of templates with side-effect-free and order-independent attribute references.

Defining Templates

Creating Templates With Code

Here is a simple example that creates and uses a template on the fly:

Java
StringTenpl ate query = new
StringTenpl at e(" SELECT $col um$ FROM
$tabl e$; ") ;
query.setAttribute("colum", "nane");
query.setAttribute("table", "User");

C#
StringTenpl ate query = new
StringTenpl at e(" SELECT $col um$ FROM
$tabl e$; ") ;

query. Set Attribute("colum", "nane");
query. SetAttribute("table", "User");

Python
i mport stringtenplate

query =
stringtenpl ate. StringTenpl at e(" SELECT
$col utm$ FROM $t abl e$; ")
query["col um"] = "nane"
query["table"] = "User"

where St ri ngTenpl at e considers anything in $. .. $ to be something it needs to pay attention to. By
setting attributes, you are "pushing" values into the template for use when the template is printed out.
The attribute values are set by referencing their names. Invoking {{toString()}} on query would yield

Document generated by Confluence on Oct 23, 2006 11:47 Page 11

SELECT name FROM User ;

You can set an attribute multiple times, which simply means that the attribute is multi-valued. For
example, adding another value to the attribute named col utm as shown below makes the attribute
multi-valued:

Java
StringTenpl ate query = new
StringTenpl at e(" SELECT $col um$ FROM
$tabl e$; ");
query.setAttribute("colum", "nane");
query.setAttribute("colum", "email");
query.setAttribute("table", "User");
C#
StringTenpl ate query = new
StringTenpl at e(" SELECT $col um$ FROM
$tabl e$; ") ;
query. Set Attribute("colum", "nane");
query. Set Attribute("colum", "enmil");
query. SetAttribute("table", "User");
Python
query =
stringtenpatle. StringTenpl at e(" SELECT
$col um$ FROM $t abl e$; ")
query["col um"] = "nane"
query["colum"] = "email"
query[“table"] = "User"
Invoking {{toString()}} on query would now yield

SELECT naneemai | FROM User ;

Ooops...there is no separator between the multiple values. If you want a comma, say, between the
column names, then change the template to record that formatting information:

Java
StringTenpl ate query = new
StringTenpl at e(" SELECT $col umn;
separator=\",\"$ FROM $t abl e$; ") ;
query.setAttribute("colum", "nane");
query.setAttribute("colum", "enmil");
query.setAttribute("table", "User");

C#
StringTenpl ate query = new
St ri ngTenpl at e(" SELECT $col umm;
separator=\",\"$ FROM $tabl e$; ") ;
query. Set Attribute("colum", "nane");
query. Set Attribute("colum", "email");
query. SetAttribute("table", "User");
Python

query =
stringtenpl ate. StringTenpl at e(" SELECT

Document generated by Confluence on Oct 23, 2006 11:47 Page 12

$col utm; separator=\",\"$ FROM $t abl e$; ")
query["colum"] = "nane"

query["colum"] = "enmil"

query["table"] = "User

Note that the right-hand-side of the separator specification in this case is a string literal; therefore, we
have escaped the double-quotes as the template is specified in a string. In general, the right-hand-side
can be any attribute expression. Invoking {{toString()}} on query would now yield

SELECT nane, emai | FROM User ;

Attributes can be any object at all. Stri ngTenpl at e calls {{toString()}} on each object as it writes the
template out. The separator is not used unless the attribute is multi-valued.

Loading Templates From Files

To load a template from the disk you must use a St ri ngTenpl at eG oup that will manage all the
templates you load, caching them so you do not waste time talking to the disk for each template fetch
request (you can change it to not cache; see below). You may have multiple template groups. Here is a
simple example that loads the previous SQL template from a file / t np/ t heQuery. st :

SELECT $col um; separator=","$ FROM $t abl e$;

The code below creates a Stri ngTenpl at eG oup called myG oup rooted at / t np so that requests for
template t heQuery forces a load of file / t np/ t heQuery. st.

Java
StringTenpl at eG oup group = new
StringTenpl at eG oup(" myG oup"”, "/tmp");
StringTenpl ate query =
group. get I nstanceCf ("t heQuery");
query.setAttribute("colum", "nane");
query.setAttribute("colum", "enmil");
query.setAttribute("table", "User");
C#
StringTenpl at eG oup group = new
StringTenpl at eG oup(" myG oup", "/tnmp");
StringTenpl ate query =
group. Get I nstanceOf ("t heQuery");
query. SetAttribute("colum", "nane");
query. Set Attribute("colum", "enmil");
query. SetAttribute("table", "User");
Python
group =
stringtenpl ate. Stri ngTenpl at eG oup(" nyG oup"”,
"ltp”)
query = group. getlnstanceX ("t heQuery")
query["colum"] = "nane"
query["colum"] = "email"
query[“"table"] = "User"

Document generated by Confluence on Oct 23, 2006 11:47 Page 13

If you have a directory hierarchy of templates such as file / t np/j gur u/ bul | et. st, you would reference
them relative to the root; in this case, you would ask for template j guru/ bul I et ().

© Note

StringTemplate strips whitespace from the front and back of all loaded template files. You can
add, for example, <\ n> at the end of the file to get an extra carriage return.

Loading Templates relative to an implementation specific location

Java

C#

Document generated by Confluence on Oct 23, 2006 11:47

Loading Templates from CLASSPATH

When deploying applications or providing a library
for use by other programmers, you will not know
where your templates files live specifically on the
disk. You will, however, know relative to the
classpath where your templates reside. For
example, if your code is in package

com nycomnpany. server you might put your
templates in a t enpl at es subdirectory of server.
If you do not specify an absolute directory with the
StringTenpl at eGroup constructor, future loads
via that group will happen relative to the
CLASSPATH. For example, to load template file
page. st you would do the following:

/1 Look for tenplates in CLASSPATH as

resour ces

StringTenpl at eG oup group = new

StringTenpl at eG oup(" nygroup") ;

StringTenpl ate st =

group. get I nst anceXf (" coni myconpany/ server/t eng

Loading Templates relative to the Assembly's
Location

When deploying applications or providing a library
for use by other programmers, you will not know
in advance where your templates files will be
located live in the file system. You will, however,
often know the location of your templates relative
to the where the application assembly is deployed.
For example, if your code is in the an assembly
named com nyconpany. server. exe you might put
your templates in a t enpl at es subdirectory of the
directory containing com myconpany. server. exe.
If you do not specify an absolute directory with the
St ri ngTenpl at eGr oup constructor, future loads

via that group will happen relative to the location

Page 14

| at es/ page"

Python

of com nyconpany. server. exe. For example, to
load template file page. st you would do the
following:

/1 Look for tenplates relative to assenbly
| ocati on

StringTenpl at eG oup group = new
StringTenpl at eG oup(" nygr oup"”,
(string)null);

StringTenpl ate st =

group. Get I nstanceCf ("t enpl at es/ page") ;

Loading Templates from sys.path

When deploying applications or providing a library
for use by other programmers, you will not know
where your templates files live specifically on the
disk. You will, however, know relative to the

cl asspat h where your templates reside. For
example, if your code is in package

com nyconpany. server you might put your
templates in a t enpl at es subdirectory of server.
If you do not specify an absolute directory with the
St ri ngTenpl at eG oup constructor, future loads
via that group will happen relative to the

sys. pat h. For example, to load template file
page. st you would do the following:

Look for tenplates in CLASSPATH as

resour ces

group =

stringtenpl ate. Stri ngTenpl at eG oup(" nygr oup")
st =

group. get | nstanceO (" com nmyconpany/ server/teng

If page. st references, say, sear chbox template, it must be fully qualified as:

SEARCH</ f ont >:

$conl myconpany/ server/tenpl at es/ page/ sear chbox() $

This is inconvenient and ST may add the invoking template's path prefix automatically in the future.

Caching

By default templates are loaded from disk just once. During development, however, it is convenient to
turn caching off. Also, you may want to turn off caching so that you can quickly update a running site.
You can set a simple refresh interval using St ri ngTenpl at eGroup. set Refreshl nterval (...). When the
interval is reached, all templates are thrown out. Set interval to 0 to refresh constantly (no caching). Set
the interval to a huge number like | nt eger . MAX_I NT or | nt 32. MaxVal ue to have no refreshing at all.

Document generated by Confluence on Oct 23, 2006 11:47

Page 15

| at es/ page"’

Group Files

StringTenpl at e 2.0 introduced the notion of a group file that has two main attractions. First, it allows
you to define lots of small templates more conveniently because they may all be defined within a single
file. Second, you may specify formal template arguments that help St ri ngTenpl at e detect errors (such
as setting unknown attributes) and make the templates easier to read. Here is a sample group file with
two templates, var def and net hod, that could be used to generate C files:

group sinpl e;

var def (type, nane) ::= "<type> <nanme>;"

met hod(type, nanme, args) ::= <<

<type> <nanme>(<args; separator=",">) {
<statenents; separator="\n">

}

>>

All groups use <. .. > delimiters by default. Single line templates are enclosed in double quotes while
multi-line templates are enclosed in double angle-brackets. Every template must define arguments even
if the formal argument list if blank.

Using templates in a group file is straightforward. The St ri ngTenpl at eG oup class has a number of
constructors, one of which allows you to pass in a string or file or whatever:

Java
String tenplates = "group sinple;
vardef (type,nane) ..."; // tenplates from
above
/'l Use the constructor that accepts a
Reader
StringTenpl at eG oup group = new
StringTenpl at eG oup(new
StringReader (tenpl ates));
StringTenpl ate t =
group. get I nstanceCf ("vardef");
t.setAttribute("type", "int");
t.setAttribute("nane", "foo");
Systemout.println(t);
C#
String tenplates = "group sinple;
vardef (type,nane) ..."; // tenplates from
above
/1 Use the constructor that accepts a
System | O Text Reader
StringTenpl at eG oup group = new
StringTenpl at eG oup(new
Stri ngReader (tenpl ates));
StringTenpl ate t =
group. Get I nstanceCf ("vardef");
t.SetAttribute("type", "int");
t.SetAttribute("nane", "foo");
Consol e. Qut . WiteLine(t);
Python
tenpl ates = "group sinple;
vardef (type,nane) ..."; # tenplates from
above
Use the constructor that accepts a Reader
group =

Document generated by Confluence on Oct 23, 2006 11:47 Page 16

stringtenpl ate. StringTenpl at eG oup(Stringl Ot s
t = group. getlnstanceX ("vardef")

t["type"] = "int"

t["nane"] = "foo"

print str(t)

The output would be: "int foo;".
Supergroups and interfaces

Groups may derive from other groups, thus, inheriting all of the templates from the supergroup. Group
inheritance provides an appropriate model whereby a variation on a code generation target may be
defined by describing how it differs from a previously defined target. Considering Java 1.4 versus 1.5, a
Javal_5 group could specify how to alter the main Java (1.4) group templates in order to use generics
and enumerated types.

Group inheritance would not yield its full potential without template polymorphism. A parser template
instantiated via the Javal_5 group should always look for templates in Javal_5 rather than the Java
supergroup even though that template is lexically defined within group Java.

Templates with the same name in a subgroup override templates in a supergroup just as in class
inheritance. ST does not support overloaded templates so group inheritance does not take formal
arguments into consideration.

The supergroup for a group may be changed dynamically using the set Super G- oup() method. If,
however, a group must always derive from another group, use the following syntax:

group nygroup : supergroup;

If your group must satisfy a particular interface (see Group interfaces) and use the following syntax:

group nygroup inplenents anlnterface, andAnotherlnterface;

or

group nygroup : supergroup inplenents anlnterface;

if the group derives from a supergroup and implements an interface.
Maps

There are situations where you need to translate a string in one language to a string in another language.
For example, you might want to translate i nt eger to i nt when translating Pascal to C. You could pass a

Map or | Di ctionary (e.g. hashtable) from the model into the templates, but then you have output literals
in your model! The only solution is to have Stri ngTenpl at e support mappings. For example, here is how

Document generated by Confluence on Oct 23, 2006 11:47 Page 17

npl ates))

http://www.antlr.orgnull/display/ST/Group+interfaces

ANTLR v3 knows how to initialize local variables to their default values:

typelnitMap ::= [
“int":"0",
"l ong":"0",
"float":"0.0",
“doubl e":"0.0",
"bool ean": "fal se",
"byte":"0",
"“short":"0",
“char":"0",
default:"null" // anything other than an atomic type

To use the map in a template, refer to it as you would an attribute For example, <typel nit Map. i nt >
which returns " 0" . If your type name is an attribute not a constant like i nt , then use an indirect field
access: <t ypel ni t Map. (t ypeNane) >.

Map strings are actually templates that can refer to attributes that will become visible via dynamic
scoping of attributes once the map entry has been embedded within a template. This is useful for
referencing things like attribute user name from within map values. That attribute will eventually become
visible when the map a value is embedded within, say, a page template.

Large strings, such as those with newlines, can be specified with the usual large template delimiters from
the group file format: <<...>>,

The def aul t and other mappings can have empty values (implying no value). if no key is matched by the
map then an empty value is returned, which is the same as using "def aul t : " explicitly. The keyword
key is available if you would like to refer to the key that maps to this value. This is particularly useful if
you would like to filter certain words but otherwise leave a value unchanged; use default : key to
return the key unmolested if it is not found in the map.

Maps are defined in the group's scope and are visible if no attribute hides them. For example, if you
define a formal argument called t ypel ni t Map in template f oo then f oo cannot see the map defined in
the group (though you could pass it in as another parameter). If a name is not an attribute and it's not in
the group's maps table, then the super group is consulted etc... You may not redefine a map and it may
not have the same name as a template in that group. The def aul t value is used if you use a key as a
property that doesn't exist. For example <t ypel ni t Map. f oo> returns "nul | ". The default clause must be
at the end of the map.

You'll note that the square brackets will denote data structure in other areas too such as[a, b, c,...]
which makes a singe multi-valued attribute out of other attributes so you can iterate across them.

Group file format

group

“group” ID(':" ID)? ("inmplenments” ID('," ID)*)2 ';"'
(tenplate | mapdef)+
tenpl ate
: '@ ID" I D
I D

——

(" (args)? ')" "=t
(STRING 0 ®ooc®

Document generated by Confluence on Oct 23, 2006 11:47 Page 18

BIGSTRING // <<...>>

—_——

| D"::=" ID /] alias one tenplate to another
ar gs: arg (' arg)*
arg : ID"'=" STRI NG [ox="..."
| ID'=" ANONYMOUS TEMPLATE // x={...}
mapdef
: I D =" map
map : I) _
keyVval uePair (',' keyVal uePair)*
("'," "default" ':' keyValue)?

e

keyVal uePai r

STRING ':' keyVal ue
keyVal ue
: Bl GSTRI NG
| STRING
| "key"
|
Both/* ... */ and single-line// ... comments are allowed outside of templates. Inside templates,
you must use<!...!>

An aside: All along, during my website construction days, I kept in mind that any text output
follows a format and, thus, output sentences conform to a language. Consequently, a grammar
should describe the output rather than a bunch of ad hoc print statements in code. This helped me
formalize the study of templates because I could compare templates (output grammars) to well
established ideas from formal language theory and context-free grammars. This allowed me to
show, among other things, that Stri ngTenpl at e can easily generate any document describable with
an XML DTD even though it is deliberately limited. The group file format should look very much like
a grammar to you.

i) Scoping rules and attribute look-up

See the scoping rules section for information on how formal arguments affect attribute look up.

Group files have a . st g file extension.

Group loaders

When group files derive from another group, StringTemplate has to know how to load that group and its
supergroups. StringTemplate 2.3 introduces the {{StringTemplateGrouplLoader }} interface to describe
objects that know how to load groups and interfaces.

Document generated by Confluence on Oct 23, 2006 11:47 Page 19

public interface StringTenpl at eG oupLoader {
/** Load the group called groupNanme from sonewhere. Return null
* if no group is found.
*/
public StringTenpl ateG oup | oadG oup(String groupNane);

/** Load a group with a specified superGoup. Goups with
* region definitions must know their supergroup to find tenpl ates
* during parsing.
*/
public StringTenpl ateG oup | oadG oup(String groupName,
StringTenpl at eG oup super G oup) ;

/** Load the interface called interfaceNanme from sonmewhere. Return null
* if no interface is found.

*/

public StringTenpl ateG oupl nterface |oadlnterface(String interfaceNane);

By default, there are two implementations: Pat hGr oupLoader and ConmonG oupLoader .

Pat hGr oupLoader is a simple loader that looks only in the directory(ies) you specify in the ctor (Note that
you can specify the char encoding). CormonGr oupLoader, on the other hand, is a loader that also looks in
the directory(ies) you specify in the ctor, but it uses the classpath rather than absolute dirs so it can be
used when the ST application is jar'd up. Use Static method:

StringTenpl at eG oup. r egi st er G oupLoader (| oader) ;

to specify a loader. For example, here is how ANTLR loads its templates:

/ get a group |oader containing main tenplates dir and target subdir
String tenplateDirs =

cl asspat hTenpl at eRoot Di r ect or yNane+": " +

cl asspat hTenpl at eRoot Di r ect or yNane+"/" +l anguage;
StringTenpl at eG oupLoader | oader =

new CommonG oupLoader (tenplateDirs.toString(),

Err or Manager . get St ri ngTenpl at eError Li stener());

StringTenpl at eG oup. r egi st er G oupLoader (| oader) ;

/1 first load nain | anguage tenpl ate
StringTenpl at eG oup coreTenpl ates =
StringTenpl at eG oup. | oadG oup(| anguage) ;

In order to use the group file format inheritance specifier, group sub : sup, you must specify a loader.

Formal argument default values

Sometimes it is convenient to have default values for formal arguments that are used when no value is
set by the model. For example, when generating a parser in Java from ANTLR, I want the super class of
the generated object to be Par ser unless the ANTLR user uses an option to set the super class to some
custom class. For example, here is a partial par ser template definition:

parser (name, rules, superC ass="Parser") ::= ...

Any argument may be given a default value by following the name with an equals sign and a string or an
anonymous template.

Document generated by Confluence on Oct 23, 2006 11:47 Page 20

Formal argument error handling

When using a group file format to specify templates, you must specify the formal arguments for that
template. If you try to set an attribute via set At t ri but e that is not specifically formally defined in that
template, you will get the following exception:

Java NoSuchEl ement Excepti on
C# I nval i dOper ati onExcepti on
Python NoSuchEl ement Excepti on

If you reference an attribute that is not formally defined in that template or any enclosing template, you
also get the same exception.

Newline handling

The first newline following the << in a template definition is ignored as it is usually used just to get the
first line of text for the template at the start of a line. In other words, if you want to have a blank line at
the start of your template, use:

foo() ::= <<

2nd line is not blank, but first is

>>
or
foo() ::= <<<\n>
sanme as before; newine then this |ine
>>

The last newline before the >> is also ignored and is included in the output. To add a final newline, add an
extra line or <\ n> before the >>:

foo() ::= <<
rodent
>>

or
foo() ::= <<
rodent <\ n>
>>

The following template:

foo() ::= <<

Document generated by Confluence on Oct 23, 2006 11:47 Page 21

rodent
>>

on the other hand, is identical to

foo() ::= "rodent"

Group Interfaces

To promote retargetable code generators, ST supports interface implementation a la Java interfaces
where a template group that implements an interface must implement all templates in the interface and
with the proper argument lists. The interface is the published, executable documentation for building
back-ends for the code generator and has proven to be an excellent way to inform programmers
responsible for the various targets of changes to the requirements.

The developers of the ANTLR code generation targets always have the same two questions: Initially they
ask, "What is the set of templates I have to define for my target?" and then, during development, they
ask, "Has a change to the code generation logic forced any changes to the requirements of my template
library?"

Originally, the answer to the first question involved abstracting the list of templates and their formal
arguments from the existing Java target. The answer to the second question involved using a difference
tool to point out changes in the Java target from repository check-in to check-in. Without a way to
formally notify target developers and to automatically catch logic-template mismatches, bugs creep in
that become apparent only when the stale template definitions are exercised by the code generator. This
situation is analogous to programs in dynamically typed languages like Python where method signature
changes can leave landmines in unexercised code. In short, there were no good answers.

ST now supports group interfaces that describe a collection of template signatures, names and formal
arguments, in a manner analogous to Java interfaces. Interfaces clearly identify the set of all templates
that a target must define as well as the attributes they operate on. The first question regarding the
required set of templates now has a good answer.

Interfaces also provide a form of type safety whereby a target is examined upon code generator startup
to see that it satisfies the interface. Here is a piece of the ANTLR main target interface:

i nterface ANTLRCor e;

par ser (nane, scopes, tokens, tokenNanes, rules,
numRul es, cyclicDFAs, bitsets, ASTLabel Type,
super d ass, |abel Type, nenbers);

rul e(rul eNane, rul eDescriptor, block, enptyRule,
description, exceptions);

/** \What file extension to use; e.g., ".java" */

codeFi | eExt ensi on() ;

All of the various targets then implement the interface; e.g.,

group Java i npl ements ANTLRCor e;

Document generated by Confluence on Oct 23, 2006 11:47 Page 22

The code generator, which loads target templates, notifies developers of any inconsistencies immediately
upon startup effectively answering the second question regarding notification of template library changes.
Group interfaces provide excellent documentation, promote consistency, and reduce hidden bugs.

Interfaces look exactly like groups except that they don't have template implementations for the template
declarations although they must have the complete parameter list. Further, a template may be defined as
optional using the opti onal keyword:

opti onal headerFil e(actionScope, actions, docConment, recognizer, ...);

Expressions

Attribute References

Named attributes

The most common thing in a template besides plain text is a simple named attribute reference such as:

Your enmil: S$enmil $

The template will look up the value of emai | and insert it into the output stream when you ask the
template to print itself out. If emai | has no value, then it evaluates to the empty string and nothing is
printed out for that attribute expression. When working with group files, if emai | is not defined in the
formal parameter list of an enclosing template, an exception is thrown.

If the attribute is multi-value such as an instance of a list, the elements are emitted without separator
one after the other. If there are null values in the list, these are ignored by default. Given template
$val ues$ with attribute values=9,6,null,2,null then the output would be:

962

To use a separator in between those multiple values, use the separ at or option:

$val ues; separator=", "$

The output would be:

To emit a special value for each null element in a list, use the nul | option:

$val ues; null="-1", separator=", "$

Again using values=9,6,null,2,null then the output would be:

Document generated by Confluence on Oct 23, 2006 11:47 Page 23

9, 6, -1, 2, -1

Property references

If a named attribute is an aggregate with a property or a simple data field, you may reference that

property using attribute.property. For example:

Your name: $person. nane$
Your enmil: $person.email $

St ri ngTenpl at e ignores the actual object type stored in attribute per son and simply looks for one of the

following via reflection (in search order):

Java

C#

Document generated by Confluence on Oct 23, 2006 11:47

1. A method named get Nane()

2. A method named isName() -
Stri ngTenpl at e accepts isName() if it
returns a Boolean

If found, a return value is obtained via reflection.
The person. emai | expression is resolved in a

similar manner.

If the property is not accessible ala JavaBeans,
Stri ngTenpl at e attempts to find a field with the

same name as the property. In the above

example, StringTenpl at e would look for fields
nane and emai | without the capitalization used

with JavaBeans property access methods

1. a C# property (i.e. a non-indexed CLR
property) named nane

A method named get _nane()

A method named Get nane()

A method named | snane()

A method named get nane()

A method named i snane()

A field named nane

NV AWN

thi s["nane"]

A C# indexer (i.e. a CLR indexed property)
that accepts a single string parameter -

If found, a return value is obtained via reflection.
The per son. enmi | expression is resolved in a

similar manner.

Page 24

As shown above, if the property is not accessible
as a C# property, Stri ngTenpl at e attempts to
find a field with the same name as the property.
In the above example, Stri ngTenpl at e would
look for fields name and emai | without the
capitalization typically used with property access
methods.

Python

1. A method named get Nane()

2. A method named isName() -
St ri ngTenpl at e accepts isName() if it
returns a Boolean

If found, a return value is obtained via reflection.
The person. emai | expression is resolved in a
similar manner.

If the property is not accessible ala JavaBeans,
StringTenpl at e attempts to find a field with the
same name as the property. In the above
example, StringTenpl at e would look for fields
nane and emai | without the capitalization used
with JavaBeans property access methods

An exception is thrown if that property is not defined on the target object.

Because the type is ignored, you can pass in whatever existing aggregate (class) you have such as User
or Person:

Java
User u =
dat abase. | ookupPer son("parrt @ guru. cont');
st.setAttribute("person", u);
C#
User u =
dat abase. LookupPer son("parrt @ guru. cont') ;
st. SetAttribute("person", u);
Python
User u =
dat abase. | ookupPer son("parrt @ guru. cont');
st["person"] = u

Or, if a suitable aggregate doesn't exist, you can make a connector or "glue" object and pass that in
instead:

Document generated by Confluence on Oct 23, 2006 11:47 Page 25

Java
st.setAttribute("person”, new Connector());

C#
st. SetAttribute("person", new Connector());

Python
st["person"] = Connector ()

where Connect or is defined as:

Java
public class Connector {

public String getNanme() { return
"Terence"; }

public String getEmail () { return
"parrt @guru.cont'; }
}

C#
public class Connector {

public string Name { get {return
"Terence";} }

public string Email { get { return
"parrt@aguru.coni;} }
}

Python
cl ass Connector (object):
def get Nane(sel f):
return "Terence"

def getEmail (self):
return "parrt @ guru. cont

The ability to reference aggregrate properties saves you the trouble of having to pull out the properties
with code like this:

Java
User u =
dat abase. | ookupPer son("parrt @ guru. cont');
st.setAttribute("nane", u.getNane());
st.setAttribute("email", u.getEmail());

C#
User u =
dat abase. | ookupPer son("parrt @ guru. cont');
st. SetAttri bute("name", u.Nane);
st.SetAttribute("email", u.Emil);
Python

u =
dat abase. | ookupPer son("parrt @ guru. cont')
st["name"[= u.get Name()
st["email"] = u.getEmail ()

Document generated by Confluence on Oct 23, 2006 11:47 Page 26

and having template:

Your nane: $nane$
Your emmil: $emil$

The latter is more widely applicable and totally decoupled from code and logic; i.e., it's "better"
but much less convenient. Be very careful that the property methods do not have any side-effects
like updating a counter or whatever. This breaks the rule of order of evaluation independence.

Indirect property names

Sometimes the property name is itself in which case you need to use indirect property access notation:

$per son. (propertyNane) $

where pr opert yNane is an attribute whose value is the name of a property to fetch from per son. Using
the examples from above, propert yNanme could hold the value of either nane or emai | .

pr opert yName may actually be an expression instead of a simple attribute name.

Map key/value pair access

Java
You may pass in instances of any object that
implements the Map interface. Rather than
creating an aggregate object (though automatic
aggregate creation is discussed in the next
section) you can pass in a HashMap that has keys
referencable within templates. For example,
StringTenpl ate a = new
StringTenpl at e(" $user . nane$,
$user . phone$") ;
HashMap user = new HashMap();
user. put ("nane", "Terence");
user. put ("phone", "none-of -your-busi ness");
a.setAttribute("user", user);
String results = a.toString();
yields a result of "Ter ence,
none- of - your - busi ness".
C#
You may pass in instances of type Hasht abl e and
Li st Di cti onary but cannot pass in objects
implementing the IDictionary)} interface

Document generated by Confluence on Oct 23, 2006 11:47 Page 27

because that would allow all sorts of
wacky stuff |ike database access. Rather
than creating an aggregate object (though
autonmti c aggregate creation is discussed
in the next section) you can pass in a
{{Hasht abl e that has keys referencable within
templates. For example,

StringTenpl ate a = new

St ri ngTenpl at e(" $user. nane$,

$user . phone$");

Hasht abl e user = new Hasht abl e();

user. Add("nane", "Terence");

user . Add(" phone", "none-of -your-busi ness");
a.Set Attribute("user", user);

string results = a.ToString();

yields a result of "Ter ence,
none- of - your - busi ness".

Python

You may pass in instances of type di ct . Rather
than creating an aggregate object (though
automatic aggregate creation is discussed in the
next section) you can pass in a di ct that has keys
referencable within templates. For example,

a =
stringtenpl ate. StringTenpl at e(" $user. nane$,
$user. phone$")

user = {}

user["name"] = "Terence"

user ["phone"] = "none-of - your - busi ness"
a["user"] = user

results = str(a)

yields a result of "Ter ence,
none- of - your - busi ness".

StringTemplate interprets Map objects to have two predefined properties: keys and val ues had yield a
list of all keys and the list of all values, respectively. When applying a template to a map, StringTemplate
iterates over the values so that <aMap> is a shorthand for <aMap.values>. Similarly <aMap.keys> walks
over the keys. You can list all of the elements in a map like this:

<aMap. keys: {k| <k> maps to <aMap. (k)>}>.

Note the use of the indirect property reference <aMap. (k) >, which says to take the value of the k as the
key in the lookup. Clearly without the parentheses the normal map lookup mechanism would treat k as a
literal and try to look up k in the map.

Automatic aggregate creation

Document generated by Confluence on Oct 23, 2006 11:47 Page 28

Creating one-off data aggregates is a pain, you have to define a new class just to associate two pieces of
data. StringTenpl at e makes it easy to group data during set Attri bute() calls. You may pass in an
aggregrate attribute name to set Attri but e() with the data to aggregate:

Java

StringTenpl ate st = new
StringTenpl ate("$itens: {$it.|ast$,
$it.first$\n}$");
st.setAttribute("items. {first,last}",
"John", "Smth");
st.setAttribute("itens.{first,last}",
"Baron", "Von Munchhausen");
String expecting =

"Smth, John\n" +

"Von Munchhausen, Baron\n";

C#
StringTenpl ate st = new
StringTenpl ate("$itens: {$it.|ast$,
$it.first$\n}s$");
st.SetAttribute("itenms.{first,last}",
"John", "Smth");
st.SetAttribute("itens.{first,last}",
"Baron", "Von Munchhausen");
string expecting = "Smith, John\n" +
"Von Munchhausen,
Bar on\ n";
Python
st =
stringtenplate. StringTenplate("$itens: {$it.ladt$,
$it.first$\n}s")
st.setAttribute("items.{first,last}",
"John", "Smth")
st.setAttribute("itens.{first,last}",
"Baron", "Von Munchhausen")
expecting =\
"Smth, John\n" +\
"Von Munchhausen, Baron\n"

Note that the template, st, expects the it ens to be aggregates with properties first and | ast . By using
attribute name

itens. {first,|last}

You are telling St ri ngTenpl at e to take the following two arguments as properties first and | ast.

The various overloads of the set Attri but e() method can handle from 1 to 5 arguments. The C# version
uses variable-length argument list (using par ans keyword).

List construction

As of v2.2, you may combine multiple attributes into a single multi-valued attribute in a syntax similar to
the group map feature. Catenate attributes by placing them in square brackets in a comma-separated
list. For example,

Document generated by Confluence on Oct 23, 2006 11:47 Page 29

$[mi ne, yours] $

creates a new multi-valued attribute (a list) with both elements - all of m ne first then all of yours. This
feature is handy when the model happens to group attributes differently than you need to access them in
the view. This ability to rearrange attributes is consistent with model-view separation because the
template cannot alter the data structure nor test its values - the template is merely looking at the data
from a new perspective.

Naturally you may combine the list construction with template application:

$[mne,yours]:{ v | ...}$

Note that this is very different from

$mne,yours:{ x,y | ...}$

which iterates max(n,m) times where n and m are the lengths of ni ne and your s, respectively. The
[m ne, yours] version iterates n+m times.

Template References

You may reference other templates to have them included just like the C language preprocessor

#i ncl ude construct behaves. For example, if you are building a web page (page. st) that has a search
box, you might want the search box stored in a separate template file, say, sear chbox. st. This has two
advantages:

e You can reuse the template over and over (no cut/paste)
e You can change one template and all search boxes change on the whole site.

Using method call syntax, just reference the foreign template:

<htm >
<body>

$§éarchbox()$
</ i)ody>
</htm >

The invoking code would still just create the overall page and the enclosing page template would
automatically create an instance of the referenced template and insert it:

Java
StringTenpl ateG oup group = new
StringTenpl at eG oup(" webpages",
"/usr/local/sitel/tenpl ates");
StringTenpl ate page =

group. get | nstanceO (" page");

Document generated by Confluence on Oct 23, 2006 11:47 Page 30

C#

Python

StringTenpl ateG oup group = new
StringTenpl at eG oup(" webpages",

"C: /| net pub/ wwr oot/ site/tenpl ates");
StringTenpl ate page =

group. Get I nst anceOf (" page") ;

group =

stringtenpl ate. Stri ngTenpl at eG oup(" webpages",
"fusr/local/siteltenplates")

page = group. getlnstanceX ("page")

If the template you want to reference, say sear chbox, is in a subdirectory of the St ri ngTenpl at eG oup
root directory called m sc, then you must reference the template as: m sc/ sear chbox() .

The included template may access attributes. How can you set the attribute of an included template?
There are two ways: inheriting attributes and passing parameters.

Accessing Attributes Of Enclosing Template

Any included template can reference the attributes of the enclosing template instance. So if sear chbox

references an attribute called r esour ce:

<form...>

<i nput type=hi dden nanme=r esource val ue=$resour ce$>

</ form

you could set attribute r esour ce in the enclosing template page object:

Java

C#

Python

StringTenpl ate page =
group. get | nst anceO (" page") ;
page. set Attri bute("resource", "faqgs");

StringTenpl ate page =
group. Get I nst anceCf (" page") ;
page. Set Attri bute("resource", "faqs");

page = group. getlnstanceO (" page")
page["resource"] = "fags"]

This "inheritance" (dynamic scoping really) of attributes feature is particularly handy for setting generally
useful attributes like si t eFont Tag in the outermost body template and being able to reference it in any

nested template in the body.

Passing Parameters To Another Template

Document generated by Confluence on Oct 23, 2006 11:47

Page 31

Another, more obvious, way to set the attributes of an included template is to pass in values as
parameters, making them look like C macro invocations rather than includes. The syntax looks like a set
of attribute assignments:

<htn >
<body>

éB.séarchbox(resourcef'f ags") $
</ Body>
</htm >

where I am setting the attribute of the included sear chbox to be the
string literal "f ags" .

The right-hand-side of the assignment may be any expression such as an attribute reference or even a
reference to another template like this:

$bol dMe(i t em=copyri ght Notice())$

You may also use an anonymous template such as:

$bol d(it={$firstName$ $| ast Nane$}) $

which first computes the template argument and then assignsittoit.

If you are using St ri ngTenpl at e groups, then you have formal parameters and for those templates with
a sole formal argument, you can pass just an expression instead of doing an assignment to the argument
name. For example, if you do $bol d(nane) $ and bol d has one formal argument called i t em thenitem
gets the value of nane just as if you had said {$bold(item=name)$?}.

Allowing enclosing attributes to pass through

When template x calls template y, the formal arguments of y hide any x arguments of the same because
the formal parameters force you to define values. This prevents surprises and makes it easy to ensure
any parameter value is empty unless you specifically set it for that template. The problem is that you
need to factor templates sometimes and want to refine behavior with a subclass or just invoke another
shared template but invoking y as <y() > hides all of x's parameters with the same name. Use <y(...)>
syntax to indicate y should inherit all values even those with the same name. <y(nanme="foo", ...)>
would set one arg, but the others are inherited whereas <y(nane="f 00") > only has nane set; all other
arguments of template y are empty. You can set manually with:

Java StringTenpl at e. set PassThr oughAttri but es()
C# StringTenpl at e. Set PassThr oughAttri but es()
Python stringtenplate. StringTenpl at e. set PassThr oughAttri but es

Argument evaluation scope

Document generated by Confluence on Oct 23, 2006 11:47 Page 32

The right-hand-side of the argument assignments are evaluated within the scope of the enclosing
template whereas the left-hand-side attribute name is the name of an attribute in the target template.
Template invocations like $bol d(it emri t em) $ actually make sense because the i t emon the right is
evaluated in a different scope.

Attribute operators

StringTemplate provides a number of operators that you can apply to attributes to get a new view of that
data: first, rest, last, length, strip.

Sometimes you need to treat the first or last element of multi-valued attribute differently than the others.
For example, if you have a list of integers in an attribute and you need to generate code to sum those
numbers, you could start like this:

<nunbers:{ n | sum+= <n>;}>

You need to define sum however:

int sum= 0;
<nunbers:{ n | sum+= <n>;}>

What if nunber s is empty though? No need to create the sumdefinition so you could do this:

<i f (nunbers)>int sum = 0; <endi f >
<numbers:{ n | sum += <n>;}>

A more specific strategy (and one that generates slightly better code as it avoids an unnecessary
initialization to 0) is the following:

<first(nunmbers):{ n | int sum+= <n>;}>
<rest(nunbers):{ n | sum+= <n>;}>

where first (nunbers) results in the first value of attribute nunber s if any and r est (nunber s) results all
values in nunber s but the first value.

The other operator available to you is | ast , which naturally results in the last value of a multi-valued
attribute.

Special cases:

e operations on empty attributes yields an empty value

e rest of a single-valued attribute yields an empty value

e tail of asingle-valued attribute yields the same as fi rst, the attribute value

Document generated by Confluence on Oct 23, 2006 11:47 Page 33

You may find it handy to use another operator sometimes: plus "string concatenate". operator. For
example, you may want to compute an argument to a template using a literal and an attribute:

... 8link(url="/fag/view?I D="+faqgid, title=faqtitle)$...

where fagi d and faqtitl e are attributes you have set for
the template that referenced | i nk.

) Terence says

I'm a little uncomfortable with this catenation operation. Please use a template instead:

... $link(url={/faq/view?l D=$f aqi d$}, title=faqtitle)$...

In order to emit the number of attributes in a single or multi-value attribute, use the | engt h operator:

int data[$length(x)$] = { $x; separator=", "$ };

In this example, with x=5,2,9 the following would be emitted:

int data[3] = { 5 2, 9 };

Null values are counted by | engt h but you can use the stri p operator to return a new view of your list
without null values:

int data[$length(strip(x))] ={ $x; separator=", "$ };

Template Application

Imagine a simple template called bol d:

$i t entb</ b>

Just as with template | i nk described above, you can reference it from a template by invoking it like a
method call:

$bol d(it emrnane) $

What if you want something bold and italicized? You could simply nest the template reference:

$hol d(itemritalics(itenrnane))$

(or $bol d(italics(nane))$ if you're using group file format and have formal parameters). Template

Document generated by Confluence on Oct 23, 2006 11:47 Page 34

italics is defined as:

<i >$i tend</i >

using a different attribute with the same name, i t em; the attributes have different values just like you
would expect if these template references where method calls in say Java or C# and, i t emwas a local
variable. Parameters and attribute references are scoped like a programming language.

Think about what you are really trying to say here. You want to say "make name italics and then make it
bold", or "apply italics to the name and then apply bold." There is an "apply template" syntax that is a
literal translation:

$nane:italics():bold()$

where the templates are applied in the order specified from left to right. This is much more clear,
particularly if you had three templates to apply:

$nane: courierFont():italics():bold()$

For this syntax to work, however, the applied templates have to reference a standard attribute because
you are not setting the attribute in a parameter assignment. In general for syntax expr:template(), an
attribute called i t is set to the value of expr. So, the definition of bol d (and analogously italics), would
have to be:

$i t $</ b>

to pick up the value of nane in our examples above.

As of 2.2 Stri ngTenpl at e, you can avoid using it as a default parameter by using formal arguments.
For expression $x:y()$, StringTenpl at e will assign the value of x to it and any sole formal argument of
y. For example, if y is:

y(item ::=" Sitent "

then i t emwould also have the value of x.

If the attribute to which you are applying a template is null (i.e., missing), then the application is not
done as there is no work to do. Optionally, you can specify what string template should display when the
attribute is null a using the nul | option:

$nanme: bol d(); null="n/a"$

That is equivalent to the following conditional:

$i f (name) $$nane: bol d() $$el sen/ aendi f $

Document generated by Confluence on Oct 23, 2006 11:47 Page 35

Applying Templates To Multi-Valued Attributes

Where template application really shines though is when an attribute is multi-valued. One of the most
common web page generation issues is making lists of items either as bullet lists or table rows etc...
Applying a template to a multi-valued attribute means that you want the template applied to each of the
values.

Consider a list of names (i.e., you set attribute names multiple times) that you want in a bullet list. If you
have a template called | i st1tem

it</1i>

then you can do this:

$nanes: listlten()$
</ ul >

and each name will appear as a bullet item. For example, if you set nanes to " Terence", " Tonl', and
"Kunl e", then you would see:

Terence</|i >
Tonx/1i>

<l'i >Kunl e</ i >
</ ul >

in the output.

Whenever you apply a template to an attribute or multi-valued attribute, the default attribute i t is set.
Similarly, attributesi and i 0 (since v3.0) of type i nt eger are set to the value's index number starting
from 1 (i O starts from 0). For example, if you wanted to make your own style of numbered list, you could
reference i to get the index:

$nanes: nunber edLi stlten()$

where template nunber edLi st |t emis defined as:

$i 3. it

In this case, the output would be:

1. Terence

2. Tonxbr>
3. Kunl e

Document generated by Confluence on Oct 23, 2006 11:47 Page 36

If there is only one attribute value, then i will be 1. However, if template nunber edLi st | t emis defined
as:

$i 0. it

The output would be:

0. Terence

1. Tonxbr>
2. Kunl e

As when invoking templates ala "includes", a single formal argument is also set to the iterated value. For
example, you could define nunber edLi st |t emas follows in a Stri ngTenpl at eG oup file:

nunberedLi stlitemitem) ::= "$i $. $itenkb
"

Templates are not applied to null values in multi-valued attributes. StringTemplate behaves as if those
values simply did not exist in the list. To emit a special string or template for each null value, use the
nul | option:

$nanes: bol d(); null="n/a"$

which will emit "n/a" for any null value in attribute nanes.

Applying Multiple Templates To Multi-Valued Attributes

The result of applying a template to a multi-valued attribute is another multi-valued attribute containing
the results of the application. You may apply another template to the results of the first template
application, which comes in handy when you need to format the elements of a list before they go into the
list. For example, to bold the elements of a list do the following (given the appropriate template
definitions from above):

$nanes: bold():listiten()$

If you actually want to apply a template to the combined (string) result of a previous template
application, enclose the previous application in parenthesis. The parenthesis will force immediate
evaluation of the template application, resulting in a string. For example,

$(names: bold()):listltem)$

results in a single list item full of a bunch of bolded names. Without the parenthesis, you get a list of
items that are bolded.

Applying Alternating Templates To Multi-Valued Attributes

Document generated by Confluence on Oct 23, 2006 11:47 Page 37

When generating lists of things, you often need to change the color or other formatting instructions
depending on the list position. For example, you might want to alternate the color of the background for
the elements of a list. The easiest and most natural way to specify this is with an alternating list of
templates to apply to an expression of the form: $expr:t1(),t2(),...,tN()$. To make an alternating list of
blue and green names, you might say:

$nanes: bl ueLi stlten(), greenListlten()$

where presumably bl uelLi st | t emtemplate is an HTML <t abl e> or something that lets you change
background color. nanes[0] would get bl ueLi st1ten() applied to it, nanes[1] would get
greenLi stlten(), and nanes[2] would get bl ueLi stlten() again, etc...

If nanes is single-valued, then bl ueLi st ten() is applied and that's it.

Applying Anonymous Templates

Some templates are so simple or so unlikely to be reused that it seems a waste of time making a
separate template file and then referencing it. St ri ngTenpl at e provides anonymous subtemplates to
handle this case. The templates are anonymous in the sense that they are not named; they are directly
applied in a single instance.

For example, to show a name list do the following:

$nanes: {$it$</1i>}$
</ ul >

where anything enclosed in curlies is an anonymous subtemplate if, of course, it's within an attribute
expression. Note that in the subtemplate, I must enclose the it reference in the template expression
delimiters. You have started a new template exactly like the surrounding template and you must
distinguish between text and attribute expressions.

You can apply multiple templates very conveniently. Here is the bold list of names again with anonymous
templates:

$nanmes: {$i t $</ b>}: {$i t $</ i >} $
</ ul >

The output would look like:

Ter ence</ b></1i >
<l'i >Tonx/ b></I1i>

<l i >Kunl e</ b></1i >
</ ul >

Anonymous templates work on single-valued attributes as well.

Document generated by Confluence on Oct 23, 2006 11:47 Page 38

As of 2.2, you may define formal arguments on anonymous templates even if you are not using

St ri ngTenpl at e groups. This syntax is borrowed from SmallTalk though it is identical in function to

| anba of Python. Use a comma-separated list of argument names followed by the '| ' "pipe" symbol. Any
single whitespace character immediately following the pipe is ignored. The following example bolds the
names in a list using an argument to avoid the monotonous use of it :

$nanmes: { n | n}$

Clearly only one argument may be defined in this situation: the iterated value of a single list.

Anonymous template application to multiple attributes

In some cases, the model may present data to the view as separate columns of data rather than as a
single list of objects, such as multi-valued attributes names and phones rather than a single users
multi-valued attribute. As of 2.2, you may iterate over multiple attributes:

$nanes, phones:{ n,p | n: p}$

An error is generated if you have too many arguments for the number of attributes. Iteration proceeds
while at least one of the attributes (nanmes or phones, in this case) has values.

Indirect template references

Sometimes the name of the template you would like to include is itself a variable. So, rather than using
"<item format ()>" you want the name of the template, f or mat , to be a variable rather than a literal.
Just enclose the template name in parenthesis to indicate you want the immediate value of that attribute
and then add () like a normal template invocation and you get "<i t em (soneFor mat) () >", which means
"look up attribute soneFor mat and use its value as a template name; appy to i t em" This deliberately
looks similar to the C function call indirection through a function pointer (e.g., "(*fp) ()" where fp is a
pointer to a function). A better way to look at it though is that the (soneFor mat) implies immediately
evaluate someFormat and use as the template name.

Usually this "variable template" situation occurs when you have a list of items to format and each
element may require a different template. Rather than have the controller code create a bunch of
instances, one could consider it better to have Stri ngTenpl at e do the creation--the controller just
names what format to use.

If Stri ngTenpl at e did not have a map definition, you could simulate its functionality. Consider
generating a list of C# declarations that are initialized to 0, false, null, etc... You could define a template
for i nt, Obj ect, Array, etc... declarations and then pass in an aggregate object that has the variable
declaration object and the format. In a template group file you might have:

group Java;

file(variables, nethods) ::= <<
<variables:{ v | <v.decl:(v.format)()>}; separator="\n">

Document generated by Confluence on Oct 23, 2006 11:47 Page 39

<nmet hods>

\ >>
intdecl (decl) ::= "int <decl.name> = 0;"
intarray(decl) ::= "int[] <decl.name> = null;"

Your code might look like:

Java

C#

Python

StringTenpl at eG oup group =

new StringTenpl at eG oup(new
Stri ngReader (tenpl ates),
Angl eBr acket Tenpl at eLexer . cl ass) ;
StringTenpl ate f =
group. get I nstanceOf ("file");
f.setAttribute("variabl es. {decl,format}",
new Decl ("i","int"), "intdecl");
f.setAttribute("variables.{decl,format}",
new Decl ("a","int-array"), "intarray");
Systemout. println("f="+f);
String expecting = ""+new i netnew i ne;

StringTenpl at eG oup group =

new StringTenpl at eG oup(new
Stri ngReader (t enpl ates),
t ypeof (Angl eBr acket Tenpl at eLexer));
StringTenpl ate f =
group. Cet I nstanceOf ("file");
f.setAttribute("variables.{decl,format}",
new Decl ("i","int"), "intdecl");
f.setAttribute("variables.{decl,format}",
new Decl ("a","int-array"), "intarray");
Consol e. Qut . WiteLine("f="+f);
string expecting = ""+new i ne+new i ne;

group =

stringtenplate. StringTenpl at eG oup(Stringl O(te
stringtenpl at e. | anguage. Angl eBr acket Tenpl at eLq
f = group. getlnstanceO ("file")
f.setAttribute("variables.{decl,format}",

Decl ("i","int"), "intdecl")
f.setAttribute("variabl es. {decl,format}",

Decl ("a","int-array"), "intarray")
print "f =", f
expecting = ""+os.|inesep

For this simple unit test, the following dummy decl class is used:

Java

C#

Document generated by Confluence on Oct 23, 2006 11:47

public static class Decl {
String nane;
String type;
public Decl (String nane, String type)
{t hi s. name=nane; this.type=type;}
public String getNarme() {return nane;}
public String getType() {return type;}

public class Decl {
string nane;
string type;

public Decl (string name, string type)

Page 40

nmpl at es),
xer . Lexer)

t hi s. name=nane; this.type=type;}
public string Nane { get {return nane;}

public string Type { get {return type;}

Python
cl ass Decl (object):
def __init__ (self, name, type)

sel f. nane = nane
self.type = type_

def get Nane(sel f)
return sel f.nanme

def get Type(self)
return self.type

The value of f. ToString() is:

int i

:0'
int[] a =

nul | ;

Missing attributes (i.e., nul | valued attributes) used as indirect template attribute generate nothing just
like referencing a missing attribute.

Conditionally Included Subtemplates (IF statements)

There are many situations when you want to conditionally include some text or another template.

Stri ngTenpl at e provides simple IF-statements to let you specify conditional includes. For example, in a
dynamic web page you usually want a slightly different look depending on whether or not the viewer is
"logged in" or not. Without a conditional include, you would need two templates: page_| ogged_i n and
page_| ogged_out . You can use a single page definition with i f (expr) attribute actions instead:

<htm >

ébbdy>

$i f (menber) $
$gutter/top_gutter_l ogged_in()$
$el se$

$gutter/top_gutter_|l ogged_out()$
$endi f $

</ body>

</htm >

where template t op_gut t er _| ogged_i n is located in the gutt er subdirectory of my
StringTenpl at eG oup.

IF actions test the presence or absence of an attribute unless the object is a Bool ean/bool , in which case
it tests the attribute for t r ue/f al se. The only operator allowed is "not" and means either "not present" or
"not true". For example, "$i f (! menber) $. .. $endi f $".

Document generated by Confluence on Oct 23, 2006 11:47 Page 41

Whitespace in conditionals issue

There is a simple, but not perfect rule: kill a single newline after <i f >, <<, <el se>, and <endi f > (but for
<endi f > only if it's on a line by itself) . Kill newlines before <el se> and <endi f > and >>. For example,

a <if (foo)>bi g<el se>snal | <endi f > dog

is identical to:

a <if(foo)>
bi g

<el se>
smal |
<endi f >

dog

It is very difficult to get the newline rule to work "properly" because sometimes you want newlines and

sometimes you don't. I

decided to chew up as many as is reasonable and then let you explicitly say <\ n> when you need to.

Functionality Summary

Syntax

<attribute>

<i>, <i0>

<attribute.property>

<attribute.(expr)>

<multi-valued-attribute>

<multi-valued-attribute; separator=expr>

<template(argument-list)>

Document generated by Confluence on Oct 23, 2006 11:47

Description

Evaluates to the value of attribute. ToSt ri ng() if
it exists else empty string.

The iteration number indexed from one and from
zero, respectively, when referenced within a
template being applied to an attribute or
attributes.

Looks for property of attribute as a property (C#),
then accessor methods like get Property() or

i sProperty() . If that fails, Stri ngTenpl at e looks
for a raw field of the attribute called property.
Evaluates to the empty string if no such property
is found.

Indirect property lookup. Same as
attribute.property except use the value of expr as
the property_ name. Evaluates to the empty string
if no such property is found.

Concatenation of ToStri ng() invoked on each
element. If multi-valued-attribute is missing his
evaluates to the empty string.

Concatenation of ToString() invoked on each
element separated by expr.

Include template. The argument-list is a list of
attribute assignments where each assignment is of
the form arg-of-template=expr where expr is

Page 42

evaluated in the context of the surrounding
template
not of the invoked template.

<(expr)(argument-list)> Include template whose name is computed via
expr. The argument-list is a list of attribute
assignments where each assignment is of the form
attribute=expr. Example $(whi chFormat) () $
looks up whi chFor mat 's value and uses that as
template name. Can also apply an indirect
template to an attribute.

<attribute:template(argument-list)> Apply template to attribute. The optional
argument-list is evaluated before application so
that you can set attributes referenced within
template. The default attribute i t is set to the
value of attribute. If attribute is multi-valued, then
it is set to each element in turn and template is
invoked n times where n is the number of values
in attribute. Example: $nane: bol d() applies
bol d() to nane's value.

<attribute:(expr)(argument-list)> Apply a template, whose name is computed from
expr, to each value of attribute. Example
$dat a: (nane) () $ looks up nane's value and uses
that as template name to apply to dat a.

<attribute:ti(argument-list): ... Apply multiple templates in order from left to

:tN(argument-list)> right. The result of a template application upon a
multi-valued attribute is another multi-valued
attribute. The overall expression evaluates to the
concatenation of all elements of the final
multi-valued attribute resulting from templateN's
application.

<attribute:{anonymous-template} > Apply an anonymous template to each element of
attribute. The iterated i t atribute is set
automatically.

<attribute:{argument-name | Apply an anonymous template to each element of
anonymous-template’} > attribute. Set the argument-name to the iterated
value and also setit.

<al,a2,...,aN:{argument-list | Parallel list iteration. March through the values of

anonymous-template} > the attributes a1..aN, setting the values to the
arguments in argument-list in the same order.
Apply the anonymous template. There is no
defined i t value unless inherited from an
enclosing scope.

<attribute:t1(),t2(),...,tN()> Apply an alternating list of templates to the
elements of attribute. The template names may
include argument lists.

<if(attribute)>subtemplate If attribute has a value or is a bool object that

<else>subtemplate2 evaluates to t rue, include subtemplate else

<endif> include subtemplate2. These conditionals may be
nested.

Document generated by Confluence on Oct 23, 2006 11:47 Page 43

<if(lattribute)>subtemplate<endif> If attribute has no value or is a bool object that
evaluates to f al se, include subtemplate. These
conditionals may be nested.

<first(attr)> The first or only element of attr. You can combine
operations to say things like first(rest(names)) to
get second element.

<last(attr)> The last or only element of attr.

<rest(attr)> All but the first element of attr. Returns nothing if
$attr$ a single valued.

<strip(attr)> Returns an iterator that skips any null values in
$attrs$. strip(x)=x when x is a single-valued
attribute.

<length(attr)> Return an integer indicating how many elements

in length $attr$ is. Single valued attributes return
1. Strings are not special; i.e., length("foo") is 1
meaning "1 attribute". Nulls are counted in lists so
a list of 300 nulls is length 300. If you don't want
to count nulls, use length(strip(list)).

\$or\< escaped delimiter prevents $ or < from starting an
attribute expression and results in that single
character.

<\ >, <\n> <\t> <\r> special characters: space, newline, tab, carriage
return.

<! comment !>, $! coment !$ Comments, ignored by StringTemplate.

Object Rendering

The atomic element of a template is a simple object that is rendered to text by its ToStri ng() method.
For example, an i nt eger object is converted to text as a sequence of characters representing the
numeric value written out. What if you wanted commas to separate the 1000's places like 1, 000, 000?
What if you wanted commas and sometimes periods depending on the locale?.

Prior to 2.2, there was no means of altering the rendering of objects to text. The controller had to pull
data from the model and wrap it on an object whose ToStri ng() method rendered it appropriately.

As of StringTenpl ate 2.2, you may register various attribute renderers associated with object class
types. Normally a single renderer will be used for a group of templates so that Dat e objects are always
displayed using the appropriate Local e, for example. There are, however, situations where you might
want a template to override the group renderers. You may register renderers with either templates or
groups and groups inherit the renderers from super groups (if any).

There is a new abstraction that defines how an object is rendered to string:

Java class Attribut eRenderer
C# interface | Attribut eRenderer
Python class Attribut eRenderer

Document generated by Confluence on Oct 23, 2006 11:47 Page 44

Here is a renderer that renders date objects tersely.

Java

public class DateRenderer inplemnments
Attri but eRenderer {
public String toString(Object o) {
Si npl eDat eFormat f = new
Si npl eDat eFor mat ("yyyy. MM dd") ;
return
f.format (((Cal endar)o).getTime());
}

}

StringTenpl ate st =new StringTenpl at e(
"date: <created>",

Angl eBr acket Tenpl at eLexer. cl ass);

st.setAttribute("created", new

Gregori anCal endar (2005, 07-1, 05));

st.regi st er Render er (G egori anCal endar . cl ass,

new Dat eRenderer());

String expecting = "date: 2005.07.05";

String result = st.toString();

C#

public class DateRenderer
I At tri but eRender er
{
public string ToString(object o) {
DateTime dt = (DateTinme) o;
return
dt. ToString("yyyy. MM dd");
}

}

StringTenpl ate st =new

StringTenpl at e(" dat e:

<creat ed>", t ypeof (Angl eBr acket Tenpl at eLexer));
st.SetAttribute("created", new

Dat eTi me(2005, 07, 05, New

Gregori anCal endar ()));

st. regi st er Render er (typeof (Dat eTi me), new

Dat eRenderer());

string expecting = "date: 2005.07.05";

string result = st.ToString();

Python

i mport stringtenplate
import date fromdatetime

cl ass
Dat eRender er (stringtenpl ate. Attri but eRender er)|:

def str(self, 0):
return o.strftime("%. %n %d")

st = stringtenplate. StringTenpl ate(\
"date: <created>", \
stringtenpl at e. | anguage. Angl eBr acket Tenpl at eLgxer. Lexer)
st["created"] = date(year=2005,
nont h=7, day=5)
st. regi st er Renderer (date,
Dat eRenderer ())
expecting = "date: 2005.07.05"
result = str(st)

In the sample code above, date objects are represented as objects of type:

Document generated by Confluence on Oct 23, 2006 11:47 Page 45

Java Cal ender
C# Dat eTi ne

Python date

All attributes of the date types above in template st are rendered using the Dat eRender er object.

You will notice that there is no way for the template to say which renderer to use. Allowing such a
mechanism would effectively imply an ability to call random code from the template. In

Stri ngTenpl at e's scheme, only the model or controller can set the renderer. The template must still
reference a simple attribute such as <cr eat ed>. If you need the same kind of attribute displayed
differently within the same template or group, you must pass in two different attribute types. This would
be rare, but if you need it, you can easily still wrap an object in a renderer before sending it to the
template as an attribute. For example, if you have a web site that allows editing of some descriptions,
you will probably need both an escaped and unescaped version of the description. Send in the unescaped
description as one attribute and send it in again wrapped in an HTML escape renderer as a different
attribute.

As far as I can tell, this functionality is mostly useful in the web page generation realm rather than code
generation; perhaps an opportunity will present it self though.

Template And Attribute Lookup Rules

Template lookup

When you request a named template via Stri ngTenpl at eG oup. get I nst anceOf () or within a template,
there is a specific sequence used to locate the template.

If a template, t, references another template and t is not specifically associated with any group, tis
implicitly associated with a default group whose root directory is ". ", the current directory. The
referenced template will be looked up in the current directory.

If a template t is associated with a group, but was not defined via a group file format, lookup a
referenced template in the group's template table. If not there, look for it on the disk under the group's
root dir. If not found, recursively look at any supergroup of the group. If not found at all, record this fact
and don't look again on the disk until refresh interval.

If the template's associated group was defined via a group file, then that group is searched first. If not
found, the template is looked up in any supergroup. The refresh interval is not used for group files
because the group file is considered complete and enduring.

Attribute scoping rules

A StringTenpl at e is a list of chunks, text literals and attribute expressions, and an attributes table. To
render a template to string, the chunks are written out in order; the expressions are evaluated only when
asked to during rendering. Attributes referenced in expressions are looked up using a very specific
sequence similar to an inheritance mechanism.

Document generated by Confluence on Oct 23, 2006 11:47 Page 46

When you nest a template within another, such as when a page template references a sear chbox
template, the nested template may see any attributes of the enclosing instance or its enclosing instances.
This mechanism is called dynamic scoping. Contrast this with lexical scoping used in most programming
languages like C# and Java where a method may not see the variables defined in invoking methods.
Dynamic scoping is very natural for templates. For example, if page has an attribute/value pair

font /Ti nes then sear chbox could reference $f ont $ when nested within a page instance.

Reference to attribute a in template t is resolved as follows:

Look in t's attribute table

Look in t's arguments

Look recursively up t's enclosing template instance chain
Look recursively up t's group / supergroup chain for a map

A WNBRE

This process is recursively executed until a is found or there are no more enclosing template instances or
super groups.

When using a group file format to specify templates, you must specify the formal arguments for that
template. If you try to access an attribute that is not formally defined in that template or an enclosing
template, you will get a I nval i dOper ati onExcept i on.

When building code generators with Stri ngTenpl at e, large heavily nested template tree structures are
commonplace and, due to dynamic attribute scoping, a nested template could inadvertently use an
attribute from an enclosing scope. This could lead to infinite recursion during rendering and other
surprises. To prevent this, formal arguments on template t hide any attribute value with that name in any
enclosing scope. Here is a test case that illustrates the

point.

Java
String tenpl ates =

"group test;" +new ine+

"bl ock(stats) ::= \"{$stats$}\""

StringTenpl ateG oup group =

new StringTenpl at eG oup(new
Stri ngReader (tenpl ates));
StringTenplate b =
group. get I nst anceXf (" bl ock");
b.setAttribute("stats",
group. get I nstanceO (" bl ock"));
String expecting ="{{}}";

C#

string tenplates =
"group test;" +new ine+
"bl ock(stats) ::= \"{$stats$}\""

StringTenpl at eG oup group = new
StringTenpl at eG oup(hew
StringReader (tenpl ates));
StringTenpl ate b =

group. Cet I nstanceO (" bl ock");

b. Set Attri bute("stats",

group. Get I nst anceCf (" bl ock"));
string expecting ="{{}}";

Document generated by Confluence on Oct 23, 2006 11:47 Page 47

Python

tenpl ates =\

"group test;" + os.linesep + \

"bl ock(stats) ::= \"{$stats$}\""
group =
stringtenpl ate. StringTenpl at eG oup(Stringl Ot 4
b = group. getlnstanced ("bl ock")
b["stats"] = group.getlnstanceX ("bl ock")
expecting ="{{}}"

Even though bl ock has a st at s value that refers to itself, there is no recursion because each instance of
bl ock hides the st at s value from above since st at s is a formal argument.

Sometimes self-recursive (hence infinitely recursive) structures occur through programming error and
they are nasty to track down. If you turn on "lint mode", Stri ngTenpl at e will attempt to find cases
where a template instance is being evaluated during the evaluation of itself. For example, here is a test

case that causes and traps infinite recursion.

Java

C#

Document generated by Confluence on Oct 23, 2006 11:47

String tenpl ates =
"group test;" +new ine+
"bl ock(stats) ::= \"$stats$\"" +
"ifstat(stats) ::=\"IF true then
$statss\ "\ n"

StringTenpl at e. set Li nt Mbde(true);
StringTenpl at eG oup group =

new StringTenpl at eG oup(new
Stri ngReader (tenpl ates));
StringTenpl ate b =
group. get |l nstanceO (" bl ock");
StringTenpl ate ifstat =
group. getl nstanceO ("ifstat");
b.setAttribute("stats", ifstat); // block
has if stat
ifstat.setAttribute("stats", b); // but
make the "if" contain bl ock

try {
String result = b.toString();

}
catch (Il egal StateException ise) {

}

string tenplates =
"group test;" +new ine+
"bl ock(stats) ::= \"$stats$\"" +
"ifstat(stats) ::=\"IF true then
$stat s\ "\ n"

StringTenpl at e. Set Li nt Mode(true);
StringTenpl at eG oup group = new
StringTenpl at eG oup(new
StringReader (tenpl ates));
StringTenpl ate b =
group. Cet I nstanceC (" bl ock");
StringTenpl ate ifstat =
group. Get I nstanceCf ("ifstat");
b. Set Attribute("stats", ifstat); // block
has if stat
ifstat.SetAttribute("stats", b); // but
make the "if" contain bl ock
try {

string result = b. ToString();

catch (I nvalidOperationException ise) {

Page 48

npl ates))

Python

tenpl ates =\
"group test;" + os.linesep + \

"bl ock(stats) ::= \"$statsH\"" +
os.linesep + \
"ifstat(stats) ::=\"IF true then

$stats$\ "\ n"

strigntenpl ate. StringTenpl at e. set Li nt Mode(Tr us
group =
stringtenpl ate. StringTenpl at eG oup(Stringl Ot {
b = group. getlnstanceO (" bl ock")

ifstat = group.getlnstanceO ("ifstat")

b["stats"] = ifstat # bl ock has if
st at
ifstat["stats"] = b # but make the
"if" contain bl ock
try:

result = str(b)
except |11 egal StateException, ise:

The nested template stack trace from exception object will be similar to:

)
npl ates))

infinite recursion to <ifstat([stats])@> referenced in <bl ock([stats])@>; stack trace:
<ifstat([stats])@>, attributes=[stats=<block()@>]>
<bl ock([stats]) @>, attributes=[stats=<ifstat()@>], references=[stats]>

<ifstat([stats])@> (start of recursive cycle)

Setting the Expression Delimiters

By default, expressions in a template are delimited by dollar signs: $. .. $. This works great for the most
common case of HTML generation because the attribute expressions are clearly highlighted in the text.
Sometimes, with other formats like SQL statement generation, you may want to change the template

expression delimiters to avoid a conflict and to make the

expressions stand out.

The start and stop strings are limited to either $. .. $ or <. .. > (unless you build your own lexical analyzer
to break apart templates into chunks). group file templates use <. .. > delimiters by default (in v2.2
$. .. $ was the default delimiter). Templates created with the StringTemplate object constructor still use

$...$ by default.

To specify that Stri ngTenpl at e should use a specific delimiter you must create a St ri ngTenpl at eG oup:

Java

StringTenpl at eG oup group =

new StringTenpl at eG oup("sql stuff",
"/tmp", Angl eBracket Tenpl at eLexer. cl ass);
StringTenpl ate query =

new StringTenpl at e(group, " SELECT
<col um> FROM <t abl e>; ") ;
query.setAttribute("colum", "nane");
query.setAttribute("table", "User");

Document generated by Confluence on Oct 23, 2006 11:47

Page 49

C#

StringTenpl ateG oup group =

new StringTenpl at eG oup("sql stuff",
"/tmp", typeof (Angl eBracket Tenpl at eLexer));
StringTenpl ate query = new
StringTenpl at e(group, "SELECT <col umm> FROM
<table>;");
query. Set Attri bute("colum", "nane");
query. SetAttribute("table", "User");

Python
group =
stringtenpl ate. Stri ngTenpl at eG oup("sql stuff",
"ltmp", \
stringtenpl at e. | anguage. Angl eBr acket Tenpl at eLd
query =

stringtenpl ate. StringTenpl at e(group,
"SELECT <col utmm> FROM <t abl e>; ")
query["colum"] = "nane"
query["table"] = "User"

All templates created through the group or in anyway associated with the group will assume your the
angle bracket delimiters. It's smart to be consistent across all files of similar type such as "all HTML
templates use $. .. $" and "all SQL templates use <. .. >".

Template inheritance

Recall that a StringTemplateGroup is a collection of related templates such as all templates associated
with the look of a web site. If you want to design a similar look for that site (such as for premium users),
you don't really want to cut-n-paste the original template files for use in the new look. Changes to the
original will not be propogated to the new look.

Just like you would do with a class definition, a template group may inherit templates from another
group, the supergroup. If template t is not found in a group, it is looked up in the supergroup, if present.
This works regardless of whether you use a group file format or load templates from the disk via a

Stri ngTenpl at eG oup object. Currently you cannot use the group file syntax to specify a supergroup. I
am investigating how this should work. In the meantime, you must explicitly set the supergroup in code.

From the unit tests, here is a simple inheritance of a template, bol d:

Java
StringTenpl at eG oup supergroup = new
StringTenpl at eG oup(" super");
StringTenpl at eG oup subgroup = new
StringTenpl at eG oup("sub");
super gr oup. def i neTenpl at e(" bol d",
"$i t $</ b>");
subgr oup. set Super G oup(super gr oup) ;
StringTenpl ate st = new
StringTenpl at e(subgr oup, "$nane: bol d() $");
st.setAttri bute("name", "Terence");
String expecting = "Terence";

C#

StringTenpl at eG oup supergroup = new
StringTenpl at eG oup(" super");
StringTenpl at eG oup subgroup = new

Document generated by Confluence on Oct 23, 2006 11:47 Page 50

xer . Lexer)

Python

StringTenpl at eG oup(" sub");

super gr oup. Def i neTenpl at e(" bol d",

"$i t $</ b>");

subgr oup. Super G oup = supergroup;
StringTenpl ate st = new

StringTenpl at e(subgroup, "$nane: bol d()$");
st. SetAttri bute("name", "Terence");

string expecting = "Terence";

supergroup =
stringtenpl ate. Stri ngTenpl at eG oup(" super")
subgroup =

stringtenpl ate. StringTenpl at eG oup("sub")
super gr oup. def i neTenpl at e(" bol d",

"$i t $</ b>")

subgr oup. set Super G oup(super gr oup)

st =

stringtenpl ate. StringTenpl at e(subgr oup,
"$nane: bol d() $")

st["nane"] = "Terence"

expecting = "Terence"

The supergroup has a bold definition but the subgroup does not. Referencing $nane: bol d() $ works
because subgroup looks into its supergroup if it is not found.

You may override templates:

Java

C#

Python

super gr oup. def i neTenpl at e(" bol d",
" $i t $</ b>");

subgr oup. def i neTenpl at e(" bol d",
"%$it $</ strong>");

super gr oup. Def i neTenpl at e(" bol d",
"$i t $</ b>");

subgr oup. Def i neTenpl at e(" bol d",
"$i t $</ strong>");

super group. def i neTenpl at e(" bol d",
"$i t $</ b>");

subgroup. def i neTenpl at e(" bol d",
"$i t $</ strong>");

And you may refer to a template in a supergroup via super. template() :

Java

Document generated by Confluence on Oct 23, 2006 11:47

StringTenpl ateG oup group = new
StringTenpl ateG oup(...);
StringTenpl at eG oup subG oup = new
StringTenpl ateG oup(...);

subG oup. set Super Gr oup(group) ;
group. def i neTenpl at e(" page",
"$font()$:text");

group. defineTenpl ate("font", "Helvetica");
subGroup. defi neTenpl ate("font",
"$super.font()$ and Times");
StringTenpl ate st =

subGroup. get | nst anceO (" page") ;

Page 51

C#

Python

StringTenpl ateG oup group = new
StringTenpl ateG oup(...);
StringTenpl at eG oup subG oup = new
StringTenpl ateG oup(...);

subG oup. Super Group = group;

group. Defi neTenpl at e(" page",
"$font()$:text");

group. DefineTenpl ate("font", "Helvetica");
subGroup. Defi neTenpl ate("font",
"$super.font()$ and Times");
StringTenpl ate st =

subGroup. Get | nst anceO (" page") ;

group =
stringtenplate. StringTenpl ateG oup(...)
subG oup =

stringtenpl ate. StringTenpl at eG oup(. . .)
subGroup. set Super G oup(gr oup)

group. def i neTenpl at e(" page",
"$font()$:text")

group. def i neTenpl ate("font", "Hel vetica")
subG oup. defi neTenpl ate("font",
"$super.font()$ and Tinmes")

st = subG oup. getl nstance (" page")

The string st. ToStri ng() results in "Hel vetica and Ti nes: text".

Just like object-oriented programming languages, Stri ngTenpl at e has polymorphism. That is, template
names are looked up dynamically relative to the invoking templates group.

The classic demonstration of dynamic message sends, for example, would be the following example

(this catches my students all the time): @

Java

C#

Document generated by Confluence on Oct 23, 2006 11:47

class A {
public void page() {bold();}
public voi d bol d()
{Systemout.println("A bold");}

class B extends A {

public void bold()
{Systemout.println("B. bold");}
}

Aa = new B();
a. page();

class A {
public void page() {bold();}
override public void bold()
{Consol e. Qut. WiteLine("A bold");}

class B: A {

virtual public void bold()
{Consol e. Qut. Wi teLine("B.bold");}
}

Aa = new B();
a. page();

Page 52

This prints "B. bol d" not "A. bol d" because the receiver determines how to answer a message not
the type of the variable. So, I have created a B object meaning that any message, such as bol d(),
invoked will first look in class B for bol d() .

Similarly, a template's group determines where it starts looking for a template. In this case, both super
and sub groups define a bol d template mirroring the code above. Because I create template st as a
member of the subG- oup and reference to bol d starts looking in subGr oup even though page is the
template referring to bol d.

Java

StringTenpl at eG oup group = new
StringTenpl at eG oup(" super");
StringTenpl ateG oup subG oup = new
StringTenpl at eG oup(" sub");

subG oup. set Super G oup(gr oup) ;
group. defi neTenpl at e("bol d",

"$i t $</ b>");

group. defi neTenpl at e(" page",
"$nane: bol d() $");

subG oup. defi neTenpl at e(" bol d",
"$i t $</ strong>");
StringTenpl ate st =

subG oup. get | nst anceCf (" page") ;
st.setAttribute("name", "Ter");
String expecting = "Ter";

C#

StringTenpl ateG oup group = new
StringTenpl at eG oup(" super");
StringTenpl at eG oup subG oup = new
StringTenpl at eG oup("sub");

subG oup. Super Group = group;

gr oup. Def i neTenpl at e(" bol d",

"$i t $</ b>");

gr oup. Defi neTenpl at e(" page",
"$nane: bol d() $") ;

subGroup. Def i neTenpl at e("bol d",
"$i t $</ strong>");
StringTenpl ate st =

subG oup. Get | nst ancef (" page") ;
st.SetAttribute("nane", "Ter");
string expecting = "Ter";

Python
group =

stringtenpl ate. StringTenpl at eG oup("super™)
subG oup =

stringtenpl ate. Stri ngTenpl at eG oup(" sub")
subGr oup. set Super G oup(gr oup)

group. def i neTenpl at e("bol d*, "$it $")
group. def i neTenpl at e(" page",

"$nane: bol d() $")

subG oup. defi neTenpl at e(" bol d",

"$i t $</ strong>")

st = subG oup. get |l nstance (" page")
st["nane"] = "Ter"

expecting = "Ter"

StringTenpl at e group maps also inherit. If an attribute reference is not found, Stri ngTenpl at e looks
for a map in its group with that name. If not found, the super group is checked.

Template regions

Document generated by Confluence on Oct 23, 2006 11:47 Page 53

ST introduces a finer-grained alternative to template inheritance, dubbed regions, that allow a
programmer to give regions (fragments) of a template a name that may be overridden in a subgroup.
(Regions are similar to something in Django). While regions are syntactic sugar on top of template
inheritance, the improvement in simplicity and clarity over normal coarser-grained inheritance is
substantial.

Regions allow you to mark sections of a template or leave a hole in a template that you can override or
define in a subgroup without having to define a separate template. For example, imagine generating code
for a method with the following template:

group Java;

nmet hod(nane, code) ::= <<

public void <name>() {
<code>

}

>>

In order to get proper separation of concerns, you would like to avoid generating debugging in your main
template group. You would like to have all debugging stuff encapsulated in a debugging group. You could
override the entire template but then you are duplicating all of the output literal text, which breaks the
"single point of change principle." Instead of using IF conditionals around the debugging code, just leave
a hole that a subgroup can override:

group Java;
net hod(nang, code) ::= <<
public void <nanme>() {
<@r eanbl e() >
<code>

In a subgrammar, define the region using a fully qualified name which includes the region's surrounding
template name:

group dbg : Java
@ret hod. preanbl e() ::= <<Systemout.println("enter");>>

Regions are like subtemplates scoped within a template, hence, the fully-qualified name of a region is
@. r() where tis the enclosing template.

Consider another problem where you would like to replace a small portion of a larger template by
creating a subgroup. Imagine you have a template that generates conditionals, but in debug mode you
would like to track the fact that you evaluated an expression. Again, to avoid mingling debugging code
with your main templates, you need to avoid "if dbg" type template expressions. Instead, mark the
region within the template that might be replaced by debugging subgroup:

group Java;
test(expr,code) ::="if (<@val ><expr><@nd>) {<code>}"

where <@>. . <@nd> marks the region called r. A subgroup can override this region:

group dbg : Java;
@est.eval () ::= "trackAndEval (<expr>)"

Document generated by Confluence on Oct 23, 2006 11:47 Page 54

Regions may not have parameters, but because of the dynamic scoping of attributes, the overridden
region may access all of the attributes of the surrounding template.

In an overridden region, @uper . r()refers to the supergroup template's original region contents.

Auto-indentation

StringTenpl at e has auto-indentation on by default. To turn it off, use Nol ndent Wi t er rather than (the
default) Aut ol ndent Witer.

At the simplest level, the indentation looks like a simple column count:

M/ dogs' nanes
$nanes; separator="\n"$
The | ast, unindented |ine

will yield output like:

My dog's nanes
Fi do
Rex
Sti nky
The | ast, unindented |ine

where the last line gets "unindented" after displaying the list. St ri ngTenpl at e tracks the characters to
the left of the $ or < rather than the column number so that if you indent with tabs versus spaces, you'll
get the same indentation in the output.

When there are nested templates, Stri ngTenpl at e tracks the combined indentation:

/] <user> is indented two spaces

mai n(user) ::= <<

Hi

\t $user: quote(); separator="\n"$
>>

quote ::=" "it" "

In this case, you would get output like:

H

\'t ' Bob'

\'t ' Ephran
\'t 'Mary

where the combined indentation is tab plus space for the attribute references in template quot e.
Expression $user $ is indented by 1 tab and hence any attribute generated from it (in this case the
$attr$ of quot e()) must have

at least the tab.

Document generated by Confluence on Oct 23, 2006 11:47 Page 55

Consider generating nested statement lists as in C. Any statements inside must be nested 4 spaces. Here

are two templates that could take care of this:

function(nane, body) ::= <<
voi d $nanme$() $body$

>>
slist(statements) ::= <<

$statenents; separator="\n"$
}>>

Your code would create a functi on template instance and an sl i st instance, which gets passed to the

functi on template as attribute body. The following code:

Java

C#

Python

should generate something like:

StringTenpl ate f =

group. get I nstanceO ("function");
f.setAttribute("nane", "foo");
StringTenpl ate body =

group. get I nstanceOf ("slist");

body. set Attri bute("statenments”, "i=1;"

StringTenpl at e nestedSList =

group. get I nstanceCf ("slist");

nest edSLi st. set Attri but e("statenments",
"i=2im);

body. set Attri bute("statenments"”,

nest edSLi st) ;

)

body. set Attri bute("statements", "i=3;");

f.setAttribute("body", body);

StringTenpl ate f =

group. Get I nstanceO ("function");
f.SetAttribute("nane", "foo");
StringTenpl ate body =

group. Getl nstanceO ("slist");

body. Set Attri bute("statenents", "i=1;"

StringTenpl ate nestedSList =

group. Cet I nstanceOf ("slist");

nest edSLi st. Set Attri but e("stat enents"”,
"i=2:m)

body. Set Attri but e("st at enent s",

nest edSLi st) ;

K

body. Set Attri bute("statenments", "i=3;");

f.SetAttribute("body", body);

f = group. getlnstanced ("function")
f["nane"] = "foo"

body = group. getlnstanceO ("slist")
body["statenments"] = "i=1;"

nest edSLi st = group. getlnstanceO ("sli
nest edSLi st["statenments"] = "i=2;"
body[" st at enent s"] nest edSLi st

body[" st at enent s"] "i=3;"

f["body"] = body

st")

voi d foo() {
i=1;

Document generated by Confluence on Oct 23, 2006 11:47

Page 56

i=2;

Indentation can only occur at the start of a line so indentation is only tracked in front of attribute
expressions following a newline.

The one exception to indentation is that naturally, $i f $ actions do not cause indentation as they do not
result in any output. However, the subtemplates (THEN and ELSE clauses) will see indentations. For
example, in the following template, the two subtemplates are indented by exactly 1 space each:

$if(foo)$
x

\t\t $el se
y

$endi f$

Automatic line wrapping

StringTemplate never automatically wraps lines--you must explicitly use the wr ap option on an expression
to indicate that StringTemplate should wrap lines in between expression elements. StringTemplate never
breaks literals, but it can break in between a literal and an expression. the line wrapping is soft in the
sense that an expression that emits text starting be for the right edge will spit out that element even if it
goes past the right edge. In other words, StringTemplate does not break elements to enforce a hard right
edge. It will not break line between element and separator To avoid having for example a comma appear
at the left edge. You may specify the line with as an argument to t oSt ri ng() such as st.toString(72). By
default, t oString() does not wrap lines.

To illustrate the simplest form of line wrapping, consider a simple list of characters that you would like to
wrap at, say, line width 3. Use the wr ap option on the char s expression:

duh(chars) ::= "<chars; wap>"

If you were to passin a, b, c, d, e and used t oSt ri ng(3), you would see

abc
de

as output. wr ap may also take an argument but it's default is simply a
\n string.

To illustrate when you would need a non-default version for this parameter, imagine the difficult task of
doing proper Fortran line wrapping. Here is a template that generates a Fortran function with a list of
arguments:

func(args) ::= <<
FUNCTI ON |i ne(<args; separator=",">)
>>

Document generated by Confluence on Oct 23, 2006 11:47 Page 57

Given parameters a..f as the elements of the ar gs list, you would get the following output:

FUNCTION line(a,b,c,d, e, f)

But what if you wanted to wrap lines at a width of 30? Simply use t oSt ri ng(30) and specify that the
expression should wrap using newline followed by six spaces followed by the 'c' character, which can be
used as the continuation character:

func(args) ::= <<
FUNCTI ON | i ne(<args; wap="\n c", separator=",">)
>>

FUNCTION |ine(a,b,c,d,\n" +
ce, f)

Similarly, if you want to break really long strings, use wrap="\"+\n \"", which emits a quote character
followed by plus symbol followed by 4 spaces.

StringTemplate properly tracks newlines in the text omitted by your templates so that it can avoid
emitting wrap strings right after your template has emitted a newline. StringTemplate also looks at your
wrap string to find the (sole) \n character. Wrap strings are of the form A\nB and StringTemplate emits
A\n first and then spits out the indentation as required by auto-indentation and then finally B. Again,
imagine, the list of characters to emit, but now consider that the expression has been indented:

duh(chars) ::= <<
<chars; wrap>
>>

With the same input a..e and t oSt ri ng(4), you would see the following output:

ab
cd
e

What if the expression is not indented with whitespace but has some text to the left? Consider dumping
out an array of numbers as a Java array definition:

array(val ues) ::= <<
int[] a = { <values; wap, separator=","> };
>>

With numbers

3,9,20,2,1,4,6,32,5,6,77,888,2,1,6,32,5,6, 77, 4, 9, 20, 2,
1,4,63,9,20,2,1,4,6,32,5,6,77,6,32,5,6,77,3,9, 20, 2, 1,
4,6,32,5,6,77,888,1,6,32,5

this template will emit (at width 40):

Document generated by Confluence on Oct 23, 2006 11:47 Page 58

int[] a={ 3,9,20,2,1,4,6,32,5,6, 77, 888,
2,1,6,32,5,6,77,4,9,20,2,1, 4,63,9, 20, 2,1,
4,6,32,5,6,77,6,32,5,6,77,3,9,20,2,1, 4,6,
32,5,6,77,888,1,6,32,5 };

While correct, that is not particularly beautiful code. What you really want, is for the numbers to line up
with the start of the expression; in this case under the first "3". to do this, use the anchor option, which
means StringTemplate should line up all wrapped lines with left edge of expression when wrapping:

array(val ues) ::= <<
int[] a = { <values; wap, anchor, separator=","> };
>>

Adding that option generates the following output:

int[] a=¢{ 3,92021,4,6,32,5,6, 77, 888,
2,1,6,32,5,6,77,4,9,20,2,1, 4,
63,9, 20,2,1,4,6, 32,5,6,77, 6,
32,5,6,77,3,9,20,2,1,4,6,32,
5,6,77,888,1,6, 32,5 };

One final complication. Sometimes you want to anchor the left edge of all wrapped lines in a position to
the left of where the expression starts. For example what if you wanted to print out three literal values
first such as "1,9,2"? Because StringTemplate can only anchor at expressions simply wrap the literals and
your values expression in an embedded anonymous template (enclose them with <{...}>) and use the
anchor on that embedded template:

dat a(a) = <<
int[] a ={ <{1,9, 2,<val ues; wap, separator=",">}; anchor> };
>>

That template yields the following output:

int[] a=1{1,9,23,9,20,2,1, 4,
6, 32,5,6, 77, 888, 2,
1,6,32,5,6,77,4,9,
20,2,1,4,63,9, 20, 2,
1,4,6 };

If there is both an indentation and an anchor, StringTemplate chooses whichever is larger.

WARNING: separators and wrap values are templates and are evaluated once before multi-valued
expressions are evaluated. You cannot change the wrap based on, for example, <i >.

Default values for wrap="\n", anchor="true" (any non-null value means anchor).

Output Filters

Version 2.0 introduced the notion of an StringTenpl ateWiter /I StringTenpl ateWiter. All text
rendered from a template goes through one of these writers before being placed in the output buffer.
Terence added this primarily for auto-indentation for code generation, but it also could be used to remove
whitespace (as a compression) from HTML output. Most recently, in 2.3, Terence updated the interface to

Document generated by Confluence on Oct 23, 2006 11:47 Page 59

support automatic line wrapping. If you don't care about indentation, you can simply subclass
Aut ol ndent Wi ter and overridewite()/Wite():

Java

public interface StringTenplateWiter {

public static final int NOWAP = -1;

voi d pushl ndentation(String indent);

String popl ndentation();

voi d pushAnchor Poi nt () ;

voi d popAnchor Poi nt () ;

void setLineWdth(int |ineWdth);

/[** Wite the string and return how
many actual chars were witten.

* Wth autoindentation and w appi ng,
nmore chars than | ength(str)

* can be emtted. No wapping is
done.

*/

int wite(String str) throws
| OExcepti on;

/[** Same as wite, but wap lines using
the indicated string as the

* wap character (such as "\n").

*/

int wite(String str, String w ap)
throws | OExcepti on;

[** Because we night need to wap at a
non-atom c string boundary

* (such as when we wrap in between
tenpl ate applications

* <data: {v|[<v>]}; wap>) we need to
expose the wrap string

* witing just like for the
separ at or.

*/

public int witeWapSeparator(String
wrap) throws | OExcepti on;

/** Wite a separator. Sanme as wite()
except that a \n cannot

* be inserted before enmitting a
separat or.

*/

int witeSeparator(String str) throws
| OExcepti on;
}

C#

public interface |StringTenpl ateWiter
{

voi d Pushl ndentation(string indent);

string Poplndentation();

void Wite(string str);
}

Python

class StringTenpl ateWiter(object):

def __init_ (self):

pass
def pushlndentation(self, indent):

Document generated by Confluence on Oct 23, 2006 11:47 Page 60

rai se Not | npl ement edError

def popl ndentation(self):
rai se Not | npl enent edErr or

def wite(self, str):
rai se Not | npl ement edError

Here is a "pass through" writer that is already defined:

Java

[** Just pass through the text */
public class Nol ndentWiter extends
Aut ol ndent Witer {
public NolndentWiter(Witer out) {
super (out);

public void wite(String str) throws

| OException {
out.wite(str);
}

C#

/** Just pass through the text */
public class Nol ndent Witer
Aut ol ndent Wi t er

{
public NolndentWiter(TextWiter
out put) :base(out put)

}

public void Wite(string str)
{

}

output. Wite(str);

Python

Just pass through the text
#
cl ass Nol ndent Wi ter(Autol ndentWiter):

def __init__(self, out):
super (Nol ndent Wi ter,
self).__init__(out)

def wite(self, str):
self.out.wite(str)
return len(str)

Use it like this:

Java

StringWiter out = new StringWiter();
StringTenpl at eG oup group =

new
StringTenpl at eG oup(“test");

group. def i neTenpl at e("bol d", "x");

StringTenpl ate nameST = new
StringTenpl at e(gr oup,
"$name: bol d(x=nane) $") ;

Document generated by Confluence on Oct 23, 2006 11:47

Page 61

C#

Python

nanmeST. set Attri but e("nane", "Terence");
// wite to 'out' with no indentation
nameST. wi t e(new Nol ndent Witer(out));
System out . printl n("out put:
"+out.toString());

StringWiter output = new StringWiter();
StringTenpl at eG oup group = new
StringTenpl ateG oup(“test");

group. Defi neTenpl at e("bol d", "x");
StringTenpl ate nameST = new

StringTenpl at e(gr oup,

"$nane: bol d(x=nane) $");

nameST. Set Attri but e("nane", "Terence");
/[l wite to 'out' with no indentation
nameST. Wit e(new Nol ndent Wi ter (output));
Consol e. Qut . Wit eLi ne("out put :

"+out put . ToString());

out = Stringl)

group =

stringtenpl ate. StringTenpl at eG oup("test")
group. def i neTenpl at e("bol d", "x")
nameST =

stringtenpl ate. Stri ngTenpl at e(gr oup,
"$nane: bol d(x=nane) $")

nameST["nanme"] = "Terence"

wite to 'out’ with no indentation
nameST. wi t e(Nol ndent Witer(out))

print "output:", str(out)

Instead of using naneST. t oStri ng(), which calls wri t e with a string write and returns its value,

manually invoke wri t e with your writer.

If you want to always use a particular output filter, then use

Java

C#

Python

StringTenpl at eG oup. set StringTenpl ateWiter(d
user Speci fi edWiterd ass);

StringTenpl at eG oup. Set Stri ngTenpl ateWiter (Ty
user Speci fi edWiterd ass);

stringtenplate. StringTenpl at eG oup. set Stri ngTs

The StringTenpl ate. toString() method is sensitive to the group's writer class.

StringTemplate Grammars

Stri ngTenpl at e has multiple grammars that describe templates at varying degrees of detail. At the
grossest level of granularity, the group. g grammar accepts a list of templates with formal template
arguments. Each of these templates is broken up into chunks of literal text and attribute expressions via

Document generated by Confluence on Oct 23, 2006 11:47

Page 62

ass

npl ateWit el

t enpl at e. g. The default lexer uses $. . . $ delimiters, but the angl e. br acket . t enpl at e. g lexer provides
<...> delimiters. Each of the attribute expression chunks is processed by acti on. g. It builds trees
(ASTs) representing the operation indicated in the expression. These ASTs

represent the "precompiled" templates, which are evaluated by the tree grammar eval . g each time a
StringTenpl at e is rendered to string with ToStri ng() .

The grammar files are:

e group. g: read a group file full of templates

e tenpl at e. g: break an individual template into chunks
e angl e. bracket.tenpl ate. g: <...> template lexer

e action. g: parse attribute expressions into ASTs

e eval . g: evaluate expression ASTs during ToStri ng()

Anything outside of the St ri ngTenpl at e start/stop delimiters is ignored.

A word about Strings. Strings are double-quoted with optional embedded escaped characters that are
translated (escapes are not translated outside of strings; for example, text outside of attribute
expressions do not get escape chars translated except \ $, \ < and \ >).

<<
STRI NG
: (ESC CHAR | ~'"')* '™

>>

The translated escapes are:

<<
ESC_CHAR
: A

B =]

(
I
I
I
I
|
I
)

>>

but other escapes are allowed and ignored.

Please see the actual grammar files for the formal language specification of St ri ngTenpl at e's various
components.

Debugging

Debugging complex and nested StringTemplate trees can be challenging. Kay Roepke is building a
graphical interface similar to ANTLRWorks for StringTemplate but until then you have a number of tools
that you can use.

Document generated by Confluence on Oct 23, 2006 11:47 Page 63

You can ask for the enclosing template structure with StringTemplate.getEnclosingInstanceStackString()
and can get the entire structure with toStructureString() that does not print the values but shows the
nested structure with the attribute names.

If for some reason StringTemplate goes into an infinite loop when you try to render a template, you
probably have a circular reference in your template containment hierarchy. Turning on link mode with
StringTemplate.setLintMode() will check for these cyclic references and a number of other features. This
will slow down template rendering so only use this during debugging.

Added StringTemplate. getDOTForDependencyGraph() a DOT diagram showing edges from n->m where
template n contains template m. It finds all direct template invocations too like <f oo() > but not indirect
ones like <(nane) () >. This is done statically and hence StringTemplate cannot see runtime arg values on
statically included templates. You get a template back that lets you reset node shape, fontsize, width,
height attributes. Use removeAttribute before setting so you are sure you only get one value.

Perhaps the most potent debugging tool you have for unraveling the complex structures emitted from
nested StringTemplate containment hierarchies is the use of start and stop tags that marked the
beginning and end of the text generated from a particular template. Method
StringTemplateGroup.emitDebugStartStopStrings() indicates whether StringTemplate should emit

<t enpl at ename>. . . </t enpl at enanme> output for templates from this group. This easily answers an
important question: "what template emitted a particular piece of text in the output?" In many cases you
will not want every single template to have those tags in the output. For example, in the ANTLR code
generator, there is a template that indicates what the output file extension is. Clearly one does not want
the file extension to have the debugging information has the code generator could not open a file with
those angle brackets and so on. Here's the snippet from the code generator:

if (EMT_TEMPLATE DELIM TERS) {
t enpl at es. em t DebugSt art St opStri ngs(true);
t enpl at es. doNot Eni t DebugSt ri ngsFor Tenpl at e(" codeFi | eExt ensi on") ;

Sometimes you use or define templates improperly. Either you set an attribute that is not used or forget
to set one or reference the wrong template etc... The following code snippets unable Java and C# to
display template hierarchies in a tree view.

Java

I have made a toy visualization tool via that shows
both the attributes and the way StringTemplate
breaks up your template into chunks. It properly
handles StringTemplate objects as attributes and
other nested structures. Here is the way to launch
a Swing frame to view your template:

StringTenpl ate st = .. .;

StringTenpl ateTreeView viz = new
StringTenpl at eTreeVi em "sanpl e", st);
viz.setVisible(true);

Here is an example display:
Cannot resolve external resource into attachment.

Document generated by Confluence on Oct 23, 2006 11:47 Page 64

C#

Acknowledgements

Please see htt www.antlr.org/credits.html

Document generated by Confluence on Oct 23, 2006 11:47

The Stri ngTenpl at eVi ewer project is a basic
visualization tool that shows both the attributes
and the way Stri ngTenpl at e breaks up your
template into chunks. It properly handles

St ri ngTenpl at e objects as attributes and other
nested structures. Here is the way to launch a
StringTemplateTreeView form to view your
template:

StringTenplate st = ...;

StringTenpl at eTreeVi ew st Form = new
StringTenpl ateTreeView("StringTenpl ateTreeVi e
Exanpl e", st);

Appl i cation. Run(st Form;

Here is a snapshot. The display is associated with
the fill-a-table example below.

© The StringTenpl at eVi ewer tool for
St ri ngTenpl at e visualization is an alpha
quality release. Expect all the usual
problems associated with alpha quality
code.

Page 65

http://www.antlr.org/credits.html

